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SECTION I
INTRODUCTION AND SUMMARY

A. INTRODUCTION

This report presents an eclectic flight control system design
methodology which is characterized by highly integrated and synergistic
use of modern and classilcal control theory techniques. The classical
flight control aspects follow conventional practice, e.g., as covered in
Ref. 10, while the optimal control component of the methodology is simply
one viable approach among the several that have been suggested (e.g.,
Refs. 1-5). It is the intermix of techniques that promises improved
effectiveness and more widespread consideration of practical matters in
the design process. Practicality is viewed herein as satisfaction of
design qualities which are explicit or implied by traditional flight con-
trol system specifications and structures. In this context practicality
indicates compliance with flight control system objectives which have a
history of success, such as requirements upon closed-loop bandwidth, and

a desire for low-order controllers.

The class of problem addressed is in the province of stationary,
linear, Gaussian, stochastic systems. Modern control theory results for
linear, stationary stochastic optimal control [i.e., linear, quadratic,
Gaussian (1QG) theory, e.g., Refs. 6-8] are the primary system synthesis
tools. Classical control theory results [i.e., transfer functions, fre-
quency response (Bode) plots, transient response plots, s-plane and Bode
root locus techniques, and multiloop analysis (e.g., Refs. 9-11)] are the

primary analytical and interpretative tools. Again, the integrated use

of these modern and classical techniques is crucial in this design pro-

cedure.

One feature typical of flight control systems is that measurements
provided by many sensors (with the possible exception of accelerometers)

are practically free from broadband noise. This presents a problem and



an opportunity in the modern control framework wherein the controller
comprises a Kalman filter and regulator combination. The absence of
broadband measurement noise requires solution of a singular Kalman filter
problem (treated in Appendix A). The singular filter solutions are of
lower order than those with full measurement noise. Thus, the ability

to solve the singular filter problem is a key point in attaining low-

order controllers, which are desirable for practical solutions.

The design methodology presented is approached in a case study for-
mat so that examples of each step are available directly as that step is
presented. The example applications use a UH-1H helicopter as the object
of control. Two complete syntheses are available:

® ILongitudinal rate of climb command, airspeed hold
system for cruise.

® Iongitudinal rate of climb command, groundspeed hold
system for hover.

The details of these examples are summarized in appendices, i.e., the
equations of motion for the UH-1H and its actuation system in Appendix B,
the hover example in Appendix C, and the 100 kt cruise example in Appen-
dix D. Appropriate material is drawn from these data bases to illustrate
the technique and methodological developments in the main body of the
report. This procedure is presented in a more general fashion so as to
apply with little change to flight control designs for conventional take-
off and landing, and vertical/short takeoff and landing aircraft.

B. PREVIEW OF THE REPORT

The flight control system design synthesis starts as all syntheses
must with design requirements. These are treated in Section IT both
generally and specifically. At the outset the analytical synthesis and
design assessment phases are placed in context with the overall design
process. The distinguishing features of optimal stochastic control and
conventional control techniques in accomplishing these phases are then
drawn. With the differences and distinguishing characteristics between

optimal and traditional concepts delineated, the next step in an eclectic



approach is to establish some connections. This is accomplished using
a simple idealized control system in whic
be developed between open-loop function crossover frequency and optimal
control cost function coefficients. This permits the conventional design
goal of bandwidth to be related to cost function parameters for an equiva-
lent optimal system. Design goals are then identified as primary (essen-
nd secondary (degree of system quality and via-
bility relative to alternatives). Control system bandwidth is primary,
while degree of stability, detailed responses of prinmry and secondaxry
controlled variables, control activity, sensitivity, etc., are examples
of secondary design goals. 1In the synthesis methodology presented here
the primary bandwidth goals are associated with the synthesis procedure
using LQG optimal controller synthesis techniques. The secondary design
goals are treated primarily via conventional controls analysis. There

is of course potential, even essential, interaction required between the
direct synthesis and analysis procedures to evolve a sultable design com-

promise, so these roles are not independent.

Although the theory of LGQG stochastic optimal control is well advanced,
the necessary engineering art required to permit practical flight control
solutions as straightforward results from theory application is not well
established. Section IIT describes some of the more important problem
formulation details which we have found can make the difference between
practical and nonsense solutions. These range from such mundane features
as actuator command and disturbance representation to the subtle but
extremely important selection of the control rates as the control features

to be accounted for in the performance index.

With design goals established and the problem formulation details in
hand, the controller synthesis itself is presented in Section IV. This
is divided into the distinct steps of filter-observer synthesis, regula~
tor synthesis, and combination to form the controller. At the beginning,
some important facts 2bout linear stochastic control are reviewed as
needed to define the synthesis problem and solution. The singular filter
problems and the implications of requiring a solution which does not re-

quire a differentiation are considered as an important aspect for flight



control system synthesis. These provide the last of the background needed
in the synthesis steps, so the remainder, which is the bulk of the sec-
tion, is devoted to specific recommended procedures for the synthesis of
flight control systems and illustrative examples of their gpplication.
Some of the syntheses are repeated for different parameter sets to i1llus-

trate the sensitivity of the designs to various weightings.

The design assessment is presented in Section V as an examination and
expansion of the synthesis results into a composite total picture of sys-
tem properties, behavior, and design margins. 1In our optimal synthesis
method the bandwidths of various loops were central issues, and these
were "awtomatically" met by direct (or perhaps iterative) exercisé of the
optimal design procedure. The design assessment uses a combination of
analytical techniques from classical and optimal control theory to expand
the scope of the results, highlight the dominant properties, and reveal
the sensitivity of the system's characteristics to uncertainties. In the
process of the detailed design assessment the optimal synthesis design
results can be better appreciated in that the relative importance of the
various terms in the control laws and factors which contribute to parti-
culaxr control behavior can be clearly identified. This detailed assess-
ment and broadened understanding lead directly to simplifications of the
design which may lead to a simpler and more practical controller and other
aspects of detailed implementation of the system. Section V begins with
an outline of the system and controller properties to be examined and a
systematic checklist-like method for exposing the properties of the system
and controller. The major content of the section is then devoted to a
close look at many of the techniques for the design evaluation illustrated
with the helicopter hovering system example. When all this is done, the
design is not only assessed but simplified implementations have also been

congidered, together with their iwmplications on system behavior.

Various technical details required for completeness or reference are
contained in the appendices. These include, as mentioned previously, the
development of the singular Kalman filter solution, aircraft equations
of motion and numerical data, and data summaries for the example appli~

cations.
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C. SOFIWARE

The extensive computations required to accomplish numerical solutions
are a necessary adjunct to the methodology presented. Volume IT of this
report contains the user's manual for the software package developed in
the course of this work. The software integrates the design prineciples
from optimal control theory with those from classical control theory,
permitting the user to design and analyze a control system. The highly
interactive and modular design philosophy employed permits the user to
develop a "hands on' appreciation and close connection with each aspect
of the synthesis and assessment process. In addition, the flexibility of
the software permits the design to proceed in exactly that sequence of

steps deemed most appropriate for the particular problems.

Figure 1 illustrates the block structure which forms the backbone of
the software package. Each block is a separate executable file which
performs the specific task noted in the figure. The underlying file sys-
tem structure allows the various blocks to communicate information to one
another. At each block, a "problem file" is read and/or written. These
problem files store all intermediate results, which the user may access
via the service routine. The service routine selectively reads and for-
mats to a line printer any user-requested elements in a given problem
file., 1In this way, the user can examine not only the final synthesis
results but also those intermediate results of interest which might pro-

vide increased understanding of the results obtained.

Two types of blocks comprise Fig. 1. The first type (Blocks 1, 3,
b, 5, 6, 7, 10) implements various aspects of the optimal control design
process using software adapted from Slater's version of Bryson and Hall's
OPTSYS (Ref. 29). The output from these blocks is stored on problem files.
The second type of block (Blocks 2, 8, 9) provides links between the opti-
mal control design and the classical control analysis techniques. The
classical control software is organized in a similar fashion, as shown
in Fig. 2.

A typical sequence of steps in designing an optimal control system
is to begin with Block 1 at the top of Fig. 1 and work clockwise through
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all blocks, making the appropriate indicated excursions to the blocks in
Fig. 2 to use the classical control analysis technigues. Blocks may be
repeated to cycle a portion of the design, while some blocks (such as

the sensitivity block, for example) may be bypassed altogether.

A complete description of the use of this package, along with a simple,
but illustrative, example is given in Vol. IT (Ref. 23).



SECTION II
FLIGHT CONTROL SYSTEM DESIGN REQUIREMENTS

A. INTRODUCTION

The flight control system's (FCS) basic overall function is to provide:
® Stability.
® Desired responses to specified inputs.

[ Suppression of the effects of disturbances, component
variations, and uncertainties.

® Modification or elimination of vehicle cross-coupling
effects.

Each specific function can be achieved by appropriate application of con-

trol techniques in a manner consistent with overall system requirements.

It is, of course, necessary to have a keen understanding of what is
"gppropriate" and "consistent." This is best arrived at via the overview

of the design process given in the next three paragraphs (from Ref. 10).

The aim of the FCS design is to produce a functional
system that performs its assigned tasks "satisfactorily."
The design process leading to this end can be broken into
several phases that are more or less chronological, yet
are extensively interrelated and intercomnnected. A typical
set of such phrases might include the following.

1) Establishment of System Purpose and Overall System
Requirements. At the design stage, system purpose can
be equated with the mission phase or task definitions.
Requirements are partially derivable from the functions
needed to be performed to accomplish these mission
phases (operational requirements), and less directly
from the characteristics of the interconnected compo-
nents and the environment in which they operate (implied
requirements).

2) Determination of Unalterable Element, Command, and Dis-
turbance Environment Characteristics. Typically, the
characteristics of some component parts of the system
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are not easily changed by the system designer. In aero-
nautical control and guidance such relatively "unaiter-
able" elements often include the vehicle itself and
possibly the control surface actuators and some of the
motion quentity sensors. The "structure" of the com-
mands and disturbances is not subject to the choice of
the designer but is instead a direct consequence of the
mission or task and the environment. The latter may,
however, be open to s i .

Evolution of Competing Feasible Systems. Usually,
requirements can be met in more than one way, e.g.,

with different sensed motion quantities and equaliza-
tion elements which are completely alterable within the
limits of physical realizability and practicality. Then
it is possible to evolve competing systems that become
candidates for selection on the basis of their various
desirable properties.

Competing System Assessment, System Selection. The com~
peting systems can be compared on a very large number of
bases which can be divided into two categories: design
quantities and design qualities. Design quantities
include the dynamic performance (relative stability,
accuracy, speed of response or bandwidth, etec.) and the
physical characteristics (weight, volume, power or energy
consumption, ete.). Design qualities, the so-called
"-ilities," include safety, operational capability,
reliability, maintainability, cost, etc. An optimum
system is one that has some '"best" combination of all
these features.

Detailed Study of the Selected System. Once a best system
has been selected, it is still necessary to validate it
for all nominal and abnormal operating conditions. The
components that do not yet exist as hardware must be
specified, designed, fabricated and tested as components.
As many of these as possible should be assenbled in a
series of system simulations which culminate in flight
tests of the complete system in its actual operating
environment. At each stage of the testing process the
assumptions that were made in previous phases of the
design should be checked for validity. If actual con-
ditions violate the assumptions, a new iteration of the
design should be begun at the point at which the incor-
rect assumption was made.

The above steps in the orderly process of evolving, or synthe-

sizing, a system that satisfactorily meets all its objectives are
governed initially by a set of functional requirements stemming
(see Ttem 1 above) from operational needs and system integration




implications. These latter, implied, requirements depend on

the final system selected (see Item %) which is then completely
specified functionally by the total set of (functional) require- .
ments. The converting of these requirements on each element of
the system into usable hardware generally regquires a specifica-
tion that includes not only the functional requirements but also
applicable specifications relating to hardware design and fabri-
cation practices, including extreme environmental factors.

In any aeronautical system design the requirements for sub-
systems evolve in a pyramidal fashion, and become more numerous
and detailed as definition of the actual equipment is approached.
The 'apex of the pyramid is the mission purpose and definition
(see Fig. 3). Immediately below this central point are three
blocks involving considerations that interact strongly in the
earliest preliminary design stages: mission phases, vehicle
operating point profile, and guidance possibilities. When the
mission is realistic, one or more feasible vehicle operating-
point profiles are joined with one or more guidance possibili-
ties to enable the overall system to perform through the con-
stituent phases of the mission.

It is within this larger context that practical flight control system
design must be considered. This project, while restricted in scope to the
analytical/quantitative aspects of design, must remain responsive to, and
compatible with, this context. Within this scope, it is clear that we are
mainly concerned with the quantitative aspects of the

Determination of Unalterable Element Command and
Disturbance Environment Characteristics

Evolution of Competing Feasible Systems
Competing System Assessment, System Selection
phases of the overall design process.

Address of these design phases using a non-traditional flight control
system synthesis technique, such as linear quadratic, Gaussian (LQG) opti-
mal control, requires that we have the distinguishing features with respect
to the more traditional techniques firmly in mind. These distinguishing
features are summarized in Table 1. As shown by the table the differences
are confined largely to the Evolution of Competing Systems design phase.
Conventional control theory considers the entire entourage of inputs and
disturbances ab initio, whereas the optimal formulation leaves direct con-

sideration of transients until a later phase of design. Control point
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TABLE 1

DISTINGUISHING FEATURES OF CONTROL SYSTEM

ANALYSIS/SYNTHESIS TECHNIQUES

DESIGN PROCESS PHASES

ANALYSIS/SYNTHESIS TECHNIQUES

LQG OPTIMAL STOCHASTIC CONTROL CONVENTIONAL CONTROL THEORY

Determination of Unalter-
able Element, Command and
Disturbance Environment
Characteristics

Similar linearized, constant coefficient equations of motion and Gaussian
statistics for random commands/disturbances are needed

Entire ensemble of discrete command
input forms

Evolution of Competing
Feasible Systems

Measurements: Similar alternatives based on traditional/feasible sensors
are applicable.

Control Point Utilization: Deter- Control Point Utilization: Deter-
mined by solution based upon cost mined by considerations of: typical
function parameters. Alternative operational utilization (e:g., by
solutions obtained by varying cost pilots); design-conducted transfer
function parameters. function survey based on multivari-

able control theory; separation of
trim and high-frequency control ac-
tions; controls coordination and/or
decoupling.

Controller Equalization: Deter- Controller Equalization: Determined
mined by solution of optimal filter- | using combinations of: s-plane and
observer problem. Alternative solu- | Bode root loci and conventional fre=-

tion obtained by altering meas- quency response synthesis procedures
urement noise and/or disturbance with multivariable control theory,
environment assumptions. response/error coefficients, and

indicial (sometimes ramp) responses.

Realization: Designer-conducted re- | Realization: Inherent in synthesis
configurations of standard regulator | procedure.
plus filter-observer realizations.

Competing System Assess-
ment, System Selection

Transient Response: Same transient response characteristics required.

RMS Response: Same rms response characteristies reduired.

System Sensitivity: Same insensitivity characteristics required.

RMS State Estimation Error: Addi-
tional basis for selecting sensor

complement.

Economy of Controller Equalization: Economy of Controller Equalization:
Direct result of sensor complement Inherent in synthesis procedure.
selection and measurement noise

assumptions.
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utilization factors at first glance appear to be quite different -— yet
the considerations used in the conventional approach must ultimately be
reflected into the optimal if an adequate design is to be achieved. 1QG
optimal control techniques provide an additional basis for selecting a
sensor complement (via rms state estimation error evaluation) and permit
an automated controller solution (albeit ordinarily in a form requiring
considerable manipulation before the flight control system implementation).
The automated solution feature is achieved at the expense of having to
specify sets of cost function parameters. We shall show later that this

Te avialsAassrio o+
<

cn o celection of contral Handw d+h
Cail O& anai1ogous TO sewlecy >ONTIro D oana S

widths when conventional
frequency response synthesis techniques are used. Additional features of
the LQG optimal control technique are that closed-loop system stability is
inherent in every controller solution (but acceptable insensitivity to
component varlations and uncertainties is by no means assured), and that
the closed-loop system can be designed specifically for a given command

and disturbance input environment.

The assessments needed at the completion of a trial synthesis to
+

any shortcomings must be corrected by additional iterations. Thus, in the
larger context, the impact of usiné one or another control system analysis/
synthesis technique should be nil. The two techniques are simply system-
atic methods for evolving and assessing competing system designs. On the
other hand, the impact will not be nil if the two techniques are not
equally effective in evolving practical candidate competing systems. This
in turn emphasizes the importance of technique in applying LQG optimal
stochastic control to the flight control problem when one chooses to take

advantage of this more highly automatic design procedure.
These aspects of technique fall into four areas:

® Establishing design goals consistent with operational
and implied requirements.

] Formulating the problem (equations of motion and input
and disturbance environment models) in terms appro-
priate to control requirements determined by mission
phase tasks.

13



® Selecting appropriate sensor complements.
[ ] Selecting appropriate cost function parameters.

These matters of technique are discussed in this and the following section.

B. CONNECTIONS BETWEEN OPTIMAL AND TRADITIONAL
CONTROL CONCEPTS FOR A SIMPILE IDEAL SYSTEM

The last section explored the differences and distinguishing charac-
teristics between optimal and more traditional concepts; the present one
will emphasize their connecting relationships. This will be accomplished
in the guise of a very simple idealized control system. Simplicity permits
the development of analytical relationships among bandwidth, open-loop func-
tion crossover frequency, transient and stochastic system response charac-
teristics, sensitivity, and optimal control cost function coefficients.

The idealized system is chosen not only for its analytical simplicity but
also for its practical significance in the application of frequency response
synthesis techniques. The system, in fact, serves as a prototype or ideal
solution which the designer attempts to emulate in far more complex applica-

tions.

1. Relationships Between System Response
Charecteristics and Sengitivity to
Crossover Frequency and Bandwidth

A block diagram for a single-loop feedback control system is given in
Fig. 4. Limiting forms of the closed-loop system transfer functions in
terms of the magnitude of the open-loop function, IG(S)I, are given in
Table 2. The key point of these limiting forms is that three regions
exigt. 1In the first, when IGI >> 1 feedback control is fully active, and
the system output follows the system input closely with little error. The
gsecond regime is at the other extreme, [G] << 1, where feedback control
is essentially not operating and the system error and input are nearly
the same. The third frequency regime, characterized by |G| of the order
of 1, is the region where feedback relationships are most complex in that
the controller and controlled element dynamics interact to create the

dominant closed-loop system modes. In a typical closed-loop system which
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Figure 4. Prototype Closed-Ioop Control System

TABLE 2. LIMITING FORMS FOR TRANSFER FUNCTIONS
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15

Ilﬁ B



is low pass in character, these three regimes correspond to low frequency,

very high frequency, and crossover frequency regions, respectively.

A key point to appreciate in Table 2 is that ]G(s)] = 1 provides a
clear demarcation between the limiting form approximations. Further,
while the limiting forms represent idealizations of the response charac-
teristics desired for the controlled variable, x, and for the error vari-
able, e, these particular idealizations are essentially independent of the

details of G(s) in the regimes where the limiting forms apply.

On the other hand, the form of G(s) in the crossover region about
IG(S)I = 1, which constitutes a transition between the limiting cases, is
of great importance. It is here that the battle between high performance
and stability is joined. The ideal form for G(s) in this crossover region
approximates G(s) = w./s, where the gain, w., coincides with the crossover

frequency (i.e., ]ac/sl = 1). A basic design principle in classical

s=Jjwe
frequency response design is to adjust G(s) so that:

G(s) = /s for s £ joe
lG(jw)| >> 1 for << w, (1)
la(w)| << 1 for o >> wg

The closed-loop consequences of this type of adjustment include good
response following of commands and good error reduction over an input fre-
quency range less than dp, with adequate closed-loop system stability.
These characteristics will be obtained regardless of the detailed nature
of G(s) in the limiting form regimes. This prescription can be general-
ized in a straightforward way for multivariable control applications
(Refs. 10 and 11). It can be modified to take more precise account of
phase margins significantly less than x/2 rad by adding an e '8 term to
the approximation for G(s) in the crossover band (Refs. 10 and 12). The
optimal controllers with which we shall be concerned here tend inherently
to be highly stable, so our simple form G(s) = u./s remains an appropriate
ideal.
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The dynamics, open- and closed-loop frequency response, and indicial

response characteristics of the idealized system are summarized in Fig. 5.

The closed-loop frequency response functions in Fig. 5 show that
crossover frequency coincides with the classical definition of signal
bandwidth. That is, bandwidth is associated with the -3.01 dB point of
the frequency response. Notice that for this particular choice for G(s)
the error suppression bandwidth and controlled variable response band-
width are both equal to w,. If AG(jw) #—x/2 when le(jw)| = 1, these
bandwidths are unequal, but both are still approximated by u, when ade-
quate phase (stability) margin is provided for in G(s). [That is, when
lG(30)| = 1, (0= qy) 2 36(jw) 2 (py — n/2) in order to insure a phase
mergin of at least @M:radians.]

The transient response characteristics for this prototype system are
illustrated by the indicial responses in Fig. 5. These are:

]
Il

1 — expl~w,t) (2)

[
I

exp(—w.t) (3)

The responses to a unit initial condition on the controlled variable (con-

sidered to be the state) are:
x = exp(-wet) = —e (4)

The transient responses are smooth, free from overshoot, and are charac-
terized by a response time, 5/& . The steady-state error response to the

gtep input is zero.

-Consider next the root-mean-square {rms) response characteristics for
this prototype system. The block diagram for the system is in Fig. 6.
The stochastic input is generated by low-pass filtering unit white noise.
Normalized rms controlled varisble (oy/o,;) and error (o./c,) responses
are plotted in Fig. T as a function of the normalized stochastic input
half-power frequency (wj;/w,). For stochastic input half-power frequencies

@y which are less than the crossover frequency, Fig. T indicates that
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attenuation of the controlled variable rms response with respect to the
rms input does not exceed 1/,/2, while attenuation of the rms error
response with respect to the rms input always exceeds the lesser of 1/4/2
ami,/wi7wc. This demonstrates that stochastic system performance for the

prototype is consistent with desired design properties.

Because the open-loop system phase lag is confined to —90 deg, this
ideal system is stable for all values of gain. Its response characteris-
tics will, however, be affected by changes in system features. These are
conveniently treated using first-order sensitivity factors which relate
shifts in open-loop parameters to their consequences as closed-loop pole
shifts. 1In general, the variation ddj in a closed-loop pole (Ai), due to
changes in open-loop gain (dk), open-loop zeros (dzi) and open-loop poles

(dp3) is given by (Ref. 10):

n
ay = sp ¥4 Y siag mflsid- (5)
i_KT+_1ijl+.1piP1 5
3= 3=

The si quantities are the first-order sensitivity factors. The subscript
and superscript notation indicates that a differential increment in the
open-loép parameter (defined by the subscript) results in a differential
increment of the ith closed-loop root (denoted in the superscript) which
is equal to the sensitivity factor times the open-loop parametric varia-
tion. Provision is made for an excess of m poles over zeros in the open-

loop transfer function. The gain sensitivity is given by,

i 1
S, = (6
“ [aG/aS]S=ki :
which for this simple ideal system 1s —w,. This leads to the obvious
result:
d)\,i = —LDC g—’f— ( 7)
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The crossover frequency is thus the gain sensitivity factor which relates

proportional changes in open-loop gain to closed-loop root shifts.

At this point we have established connections among open-loop func-
tion crossover frequency, closed-loop system transient responses, stochas-
tic input responses, and performance and system sensitivity to parameter
variations. 1In all cases the bandwidth or crossover frequency is the sig-
nificant (in this case solitary) design variable., These results can be
summarized by the design aphorism "with stability assured, everything else
is related to bandwidth." This is of course the complete story for the

case at hand.

2. Counnections Between Desired Open-ILoop Function
Crossover Frequency and Optimal Control System
Cost Function Coefficlents

Given the goal that the resulting system exhibit the favorable proper-
ties enumerated above, let us now turn to the task of designing a controller
C(s), using linear-quadratic-Gaussian optimal control procedures. For the

system to be optimal requires that a cost function, such as
oo
J = f [qpe® + rgi®] at (8)
o

be minimized. Assume that the controlled element component of the system
Yo(s) has a form in the frequency region near a, which can be approximated

by:

C
YC = -snT_l . n 0] (9)

v

The desired controller properties are to be such that the total open-loop
function G(s) = C(8)Y.(s) exhibits the three properties enumerated above,
i.e., |a(s)| >> 1, |a(s)| = |a./s|, and |G(s) << 1 at frequencies below,
near, and above the crossover frequency, dy, respectively. The optimal
control procedure can accomplish this only if the weighting factors in the

performance index or cost function can be selected to reflect these desires.
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Fortunately, this problem has been solved, and it has been shown in Ref. 13

that if the cost function coefficients, gp and rg, are chosen to satisfy

1
. (206:2)™* (10
g = ——35 ™R )
Ke

then the open-loop function G(s) will tend to have the three desired prop-
erties. Figure 8 presents the approximate asymptotes for the G(s) ampli-
tude ratio frequency response resulting when ag and TR satisfy Eq. 10.
Notice that crossover frequency, w,, for the low-frequency asymptote is
maintained regardless of the controlled element characteristics in the

frequency region near ..

The actual frequency response can be expected to be close to its

asymptotes, and controlled variable and error response bandwidths are

20 —
wc/lo we IOwc
0o—- — ;
IG(s)IdB
-20 — Ye n
A' K/s ©
-40 — -
n+l | K/s?2 |
V2 , nzl
K/s> 2
log w (rad/sec) K/st 3
Ye = K/snﬂ

Figure 8. Relationships Between Crossover Frequency
and Cost Function Coefficients
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approximately equal to the open-loop function crossover frequency. Thus,
we have here the basis for specifying ar and rg in a cost function that
induces an optimal control system which satisfies a given bandwidth
requirement. This observation is the cornerstone of the method presented

in later sections for design of practical, optimal flight control systems.
C. TDESIGN GOALS

Design goalé are deduced from mission tasks by considering what is
required to perform the task (e.g., the landing approach task requires
speed and path control). Design goals can be identified as primary (task
cannot be accomplished satisfactorily if not satisfied) or secondary (degree
to which minimum standards of task performance are exceeded). That primary
design criteria be satisfied is essential for feasibility, whereas secon-
dary design criteria satisfaction is more a matter of system quality and
viability relative to the alternatives. The design goals elaborated below
are not unique or exhaustive. They merely represent one recommendation

which has been tested successfully.
1. Elementery Mission Task Regqulrements

Experience and mission task analysis (e.g., Ref. 10) have demonstrated
that certain modes of flight control system operation are required on vir-
tually all rotorcraft missions. In our demonstration here of practical
optimal rotorcraft flight control system design we shall focus on these
more or less standard modes of operation and disregard special modes pecu~
liar to less universal mission tasks. (The same approach and philosophy
for determination of requirements and for design development carry over

for these special modes, of course.)

Table 3 lists standard operational modes of interest for rotorecraft.
These are grouped mainly by control axis, although no distinction between
the pitch and vertical axes is made because of the significant differences
in appropriate control technique at hover and at cruise. Entries in
Table 35 are ordered to roughly reflect increasing level of flight control
system responsibility (in distinction to pilot responsibility) in the over-

all conduct of these mission tasks.
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TABIE 3

STANDARD FLIGHT CONTROL SYSTEM
MODES FOR ROTORCRAFT

Longitudinal (pitch and/or vertical control axes)

Damping augmentation

Rate command/attitude hold
Attitude command

Airspeed hold
Translational rate command
Rate-of-climb command
Altitude hold/path track

Hover (longitudinal and vertical position hold)

Lateral (roll control axis)

Damping augmentation

Rate command/attitude hold

Attitude command

Heading command/hold (at mid and high speeds)
Translational rate command

Path track

Directional (yaw control axis)

Damping augmentation
Rate command/attitude hold
Heading command/hold (at low speeds)
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2. Primary Deaign Criteria

Primary design criteria involve two considerations:

® Identification of outer-loop error variables per-
tinent to a mission task (e.g., for "follow com-
manded rate of climb," rate of climb error is the
pertinent outer-loop error variable to control to
zero).

® Specification of the bandwidths over which outer-~

loop errors and other key variables (e.g., pitch

attitude) are to be controlled.
The first item is fundamental to accomplishing the mission task. The
second is, in effect, a catch-all specification of the performance required.
This was demonstrated previously in presenting the relationships among
bandwidth, open-loop crossover frequency, closed-loop system dynamic steady-
state, and stochastic performance. Stability per se is not identified here
as a primary design criterion because the design will be evolved using an
optimal control formulation which assures stability. Thus we return again

to the aphorism "with stability assured, all else relates to bandwidth."

The other key variables in the second item require further explana-
tion. If bandwidths are specified for outer-loop error control only, then
the bandwidths (or crossover frequencies) provided by the optimal control
design algorithm for all other variables will be at the minimum levels
required to achieve the outer-loop error bandwidth objective. Modes par-
ticipating significantly in the outer-loop error response may be separated
from the outer loop's dominant mode frequency by as little as a factor of
two, while non-participating modes may be changed hardly at all. Fre-
quently a factor of two separation is not adequate. For example, it is
usually inadequate for path error and attitude modal separation in view
of customary flying qualities requirements related to motion harmony and
the partitioning of attitude and path control frequency bands. It can also
be inappropriate when the effective actuator bandwidth is fixed because of
an unalterable hardware selection or when significantly higher actuator
bandwidth 1s required for other reasons. In either event, modal separa-
tion may be at the designer's choice merely by specifying target bandwidths
for control of these other key variables.
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Selection of outer-loop error variables is subject to fundamental
limitations. The number of outer-loop error variables which may be con-
trolled independently cannot exceed the number of independent controlled
element control points. Further, these outer-loop error variables must
be controllable via the independent control points. Selection of the
outer-loop error variables must be consistent with these two fundamental

limitations.

Outer-loop error and other key variables for helicopter flight control
are summarized in Table 4. Entries in this table correspond to the Stan-
dard Flight Control System Modes for Rotorcraft listed in Table 3. The
outer-loop error variable for each mode is the right-most entry in each
string not appearing under an integral. Variables to the left of the
outer-loop error in each string are the '"other key variables." In several
instances the integral of the outer-loop error appears at the extreme right
of the string. These integrals are included to assure zero steady-state
error to a step command input. Integral terms are required only when a

command input is explicit in the outer-loop error.

Tables 5 and 6 recommend bandwidth requirements for the outer-loop and
other key variables. 1In several instances alternative recommendations are
given for precision and other (non-precision) tasks. The recommendations
generally are in the form of a lower bound on bandwidth. These lower bound
values have been found to be reasonably adequate (albeit lower than optimum)
in practice. Larger bandwidths generally correspond to increased perfor-
mance (faster response, smaller rms error). However, larger bandwidth
systems, because they are more sensitive to parasitic nonlinearities and
to the influence of higher frequency modes, may produce "twitchy" system
response characteristics to which pilots object. Furthermore, increases
in bandwidth tend to equate with increased control authority and rate
requirements. Therefore, extreme caution should be exercised when requir-

ing more than twice the bandwidth lower bounds listed.

Tables 5 and 6 do not include bandwidth recommendations for the inte-
grals of outer-loop error varisbles. These low frequency integral modes
cause "tails" in the transient response. We have found that the bandwidth

for the integral should be 0.2 to 0.% of the bandwidth for the outer-loop
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TABLE U4

OUTER-LOOP ERROR AND OTHER KEY VARIABIES

Pitch Control Axis

Actuator: 3B, OB

Damping augmentation: éB, 5, 4

Rate command/attitude ]

hold: 5ps Ops Qes J Qe dt

Attitude command: b5, Bps a5 Oes [ 6g dt

Airspeed hold: éB: %R, qb, 8, UaSe» S Uase dt

Translational rate . b

command : 8ps Opsy Qs 0, ¥, [ %o dt

Hover (longitudinal . b

position hold): gy Bps D5 0, X, %, [ xe At
Vertical Control Axis

Actuator: éc’ ¢

Damping augmentation: éc, 3¢, n

Rate-of-climb command: 80, B0r he, [ he dt

Altitude hold/path track: ¢, 8¢, BP, he, [ hg dt

85ee Appendix B for variable definitions.

bUsed only when adjustments to the closed-loop damping are
required.

(continued on following page)
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TABLE % (CONCLUDED)

Lateral Control Axis

Actuator: Bp, Bp

Damping augmentation: éA, das P

Rate command/attitude .

hold: Ops Ops Pes fPe dt

Attitude command: éA: Bps pb, Pes fq@ at

Heading command: éA, Bps pb, P Ve fﬂ% dt

Translational rate . b . .

cormand : 5a, 58, D 5 @ Ye, JYe dt

Path track/hover (lateral

- ) 2 b vb

position command): Bps Bps Py @ YO, Yo, [Ye at
Diréctional Control Axis

Actuator: éR, SR

Damping augmentation: éR: Bdr, T

Rate command/attitude .

hold: 5rs Brs Tes J Te dt

Heading command: éR, BR> rb, Ve, [ le dt

bused only when adjustments to the closed-loop damping are
required.
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TABLE 5

LONGITUDINAL DESIGN BANDWIDTH

OBJECTIVE

Lower Bound
Desired Bandwidth

TABIE 6

LATERAL-DIRECTIONAL DESIGN

BANDWIDTH OBJECTIVE

Lower Bound
Desired Bandwidth

Function (rad/sec)

Path Tracking

Course > 0,10

Glide Slope 2 0.25

Precision Hover 0.50
Rate-of-Climb

Precision 1.0

Other > 0.30
Speed > 0,10
Pitch Attitude > 2.0
Actuators

Cyclic >10.0%

Collective >10,02

8These are minimum values.

lations, Actuator bandwidths may be specified rather than being design parameters.

Function (rad/sec)

Path Tracking

Course > 0.1

Localizer > 0,25

Precision Hover 0.50
Heading Hold

Precision > 1.0

Other > 0.30
Roll Attitude > 2.0
Actuators

Cyclic 210.0%

Tail Rotor Collective >10.,02

Actuator bandwidths are usually considerably larger in typical instal-



error variable. A good compromise or starting value is 0.3. Smaller
values tend to produce "tails" in transient responses which have smaller

magnitude but longer duration, and vice versa for larger values.

Next, consider the secondary design criteria.
3. Secondary Design Criterie

The secondary désign requirements involve a great many considerations.
These may be classified into two categories: verification that primary
design criteria are satisfied, and investigation of system characteristics
determining the quality of performance. Secondary criteria in both cate-
gories are epplied after the fact (or at least after the first iteration)
as far as the optimal control synthesis is concerned. Therefore, they may

be thought of as design assessment or evaluation criteria.

Verification that primary design criteria are satisfied is necessary
because the relationships between bandwidth, crossover frequency and the
cost function coefficients given previously are approximate. While we
have found these approximate relationships to be robust, verification that
desired bandwidths and crossover frequencies are actually obtained is recom-

mended.

The second category includes the numerous items which have been found
effective in exposing the strengths and weaknesses of control system
designs. A complete 1list of system design features and properties which
should be considered in this context is given in Table 44, The system

features listed there, and exemplified in Section V, include;:
® System stability characteristics and margins

® Responses

Primary controlled variables
Secondary controlled variables
Control activity

[ ] Sensitivity

Key modes
Parasitic nonlinearities

® Gain levels

® Sensor/equalization economy

30



The investigation of system characteristics to determine the quality of
performance and to quantify these system features primarily involve, but

are not confined to, such items as:
[ ] Closed-loop frequency response
® Steady-state error response
® Transient response
® RMS response
® Actuator displacement and rate limits and activity
® System insensitivity

Closed-loop frequency responses are used to determine £hat physical
responses of the system are free from resonant peaks, that the response
band is flat, etc. Steady-state error characteristics can be determined
by examining the very low frequency closed-loop transfer function for the
outer-loop error response to the command input as s —= 0. Transient
responses can be inspected for overshoot, slow "tails," smoothness, etc.
RMS responses of the errors, controls and other key variables can be com~
pared against specifications and error budgets. In particular, three times
the rms actuator displacement (o,) and rms actuator rate (oz) can be com-
pared with the available displacement and rate capability to insure that
the fraction of time these capabilities are expected to be exceeded is less
than 0.26 percent. Control activity in terms of positive-going zero cros-

sings of the trim setting can be calculated using oy/2nox-

System sensitivity characteristics can be examined from several points
of view. The optimal control solution itself facilitates computation of
the closed-loop regulator pole first-order sensitivity to plant coeffi-
cient changes and to regulator gain changes. The dual relationships
between the regulator and filter solutions can be used to evaluate the
closed-loop filter pole first-order sensitivity to plant model coefficient
changes and to filter gain changes. First-order sensitivity effects are
also available via the partial fraction expansions of the closed-loop trans-
fer functions used in computing transient responses. The modal response

coefficients of the partial fraction expansions are gain sensitivities
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(Ref. 10). Finally, sensitivity to use of the designed controller at
flight conditions other than the design case, to use with more comprehen-
sive models of plant dynamics, and to use of simplified approximate ver-

sions of the designed controller can be evaluated.

D. APPLICATION OF THE DESIGN
CRITERIA IN SYNTHESIS

Primary and secondary classes of the design checklist items for rotor-
craft flight control systems have been presented above. In the synthesis
routine the primary requirements are to be addressed directly via the LQG
optimal controller synthesis procedure. This is accomplished first by
formulating the problem so that appropriate outer-loop error quantities
are included, and second by making use of fundamental relationships between

response bandwidth and cost function coefficient wvalues.

Design evaluation for satisfaction of the secondary criteria is after
the fact of the optimal design. To the extent that any changes are needed,

secondary requirements are reflected indirectly in the next design cycle

via the LQG optimal controller synthesis procedure. Connections between
secondary requirements and the cost function coefficient changes required
tend to be straightforward. (For example, if activity of one control point
is excessive, increase the cost function coefficient family weighting that
control and those variables which are affected sensitively by that control,
by a common factor.) In addressing secondary requirements, primary require-
ments must remain satisfied. Thus primary requirements act as constraints.
If both sets of requirements cannot be satisfied simultaneously, then it
will be necessary to modify the sensor array, provide additional controlled
element capability or adjust bandwidth requirements downward. If simul-
taneous satisfaction still cannot be obtained after maximum compromise,
then it is not feasible to accomplish the mission task with the available

resources.

The single most important point to appreciate in connection with this
design checklist is that only a very few design requirements are addressed
directly in applying the LQG optimal controller synthesis procedure. Yet,

because many of the secondary requirements are closely connected with
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bandwidth, these requirements tend to be satisfied as well. Satisfac-
tion of the remaining design requirements is still an artful process which
requires a full appreciation of the requirements and of their cause-effect
connection with the dynamical physics and mathematics of the particular
application. This is the case even though ILQG optimal controller synthe-
sis techniques are used. Therefore, the ultimate suitability of flight
control system designs will remain keenly dependent upon the designer's
experience. Nevertheless, modern synthesis techniques can contribute very

significantly and effectively by providing candidate flight control system

designs for complex tasks and plants, which are responsive to primary design

goals.
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SECTION III
PROBLEM FORMULATION

A. GENERAL

Synthesis of practical optimal flight control systems depends upon
appropriate formulation of the problem to an extent which we find surpris-
ing. Careful attention to actuator representation, integrated errors,

etc., can make the difference between practical and nonsense solutions.

In formulating the plant, i.e., the model of the fixed or unalterable
elements of the system, we adopt the viewpoint that we are dealing with a
closed, stochastic system. This means, for example, that all significant
elements of the command and disturbance input environment must be included,
and that all variables which may be used in the cost function must be pro-
vided. The subsections which follow attempt to summarize practices we
have found effective. Figure 9 (page 35) provides the generalized form
into which the flight control synthesis problems are ultimately cast.
Figure 9 can be partitioned into several subsections, as explained below.

® Stochastic Command and Disturbance Input. The subsystem

having matrices with § subscripts (Fig. 9a, below) is

used to generate the command and disturbance vector, yg,
by providing shaping for the white process noise vector, w.

*g = FgXg + gV (11)
Yg = HgXxg + tS (12)
ts
Process Shaping Filter
Noise States Commands and
w Ig Xs Disturbances
‘ rs s =1 Hg Ys
Fg [

Figure Ja. Stochastic Command and Disturbance Subsystem
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Jg =f(y’QRy +u’Rp uldt
(4} Y N

JsE [( Re-xellRe -xe) + (Rg ~xgM(Rg=x5)

Test Points
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ts Input ty Measurement toL Open-Loop
Process Noise Function
Noise
w - Xs AJ_LYS
Iy |T1 [ /s = Hs {1}
Measurement
Noise
v
FS
w )
] w
I--|c Ce Fo Fu Fum
Control Measurements
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E[w] = E{v]=0 0 y
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= Q =R
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Figure 9.

Formulation of Problem



® Controlled Element State Variables. The subsystem having
matrices with C subscripts (Fig. 9b) is used to generate the
controlled element state variables, xn. Provision is made for
excitation of the controlled element via control variables, u,
commands and disturbances, yg, and white process nolse, W.

Xo = FoXg+ Gou + Co¥g + IeW (13)
Commands and
Disturbances —»] Cc¢
Ys
Control i Controlled
OnJO 5 Ge S = Element
S States
Xc
Process
Noise —» Tc Fe L'_‘
w

Figure 9b. Controlled Element Subsystem

® Measurements. The gsubsystem having matrices with M sub-
scripts (Fig. 9c) is used to model output variables, yy, and
sensor outputs, z. Sensor outputs may be linear combinations
of the commands and disturbances, yg, the controlled element
state, xn, and the white measurement noise, w.

z = Iyyy+ v+ tv+ Fytop (15)
toL

Commands and Measurement
Disturbances —s={ £, | Noise Fm

¥s

Output
Controlled ym Measurements

Element States —==1 H,_ I z

Xc

Figure 9c. Measurement Subsystem
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Other Output Variables. Variables of interest which are
not the objective of measurement (i.e., which are not in yy)
are included in y~. The subsystem having matrices with

0 subscripts (Fig. 9d) provides these variables.

Yo = Hp¥g * Fo¥g ' (16)
Commands and
Disturbances -—»= F,
Vs
Controlled
Element States =1 H, Othery(())utputs
Xc

Figure 9d. Other Output Subsystem

Outputs. The outputs, y (Fig. 9e), consist of the variables
which are the objects of measurement, yy, plus the other out-
put variables, y5. Notice that all variables potentially of
interest in the cost function must be included at the outset
in formulation.

v
M
vy = (17

kL
Outputs [ .
™ 0.

Ou'r;auts
-
Other Outputs [0

Yo I

Figure Qe. Outputs Subsystem

Loop Opening Points. The input, yy, to every sensor (i.e.,

tThe kKinematic portion of every measurement, z) may be inter-
rupted individually by setting elements of the identity matrix,
Iy to zero (Fig. 9f). This feature provides the ability to
examine closed-loop system transfer functions with some or all
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Shaping
Filter
States
Xs

Controlled
Element

feedback loops open at the measurement point. This central
feature permits the calculation of optimal system properties
in a form consonant with the criteria and considerations used
to evaluate conventionally designed systems.

Outputs

Y —-] IM p——— 0 5 i
M

Measurements
A

Figure 9f. Loop Opening Subsystem

Test Points. Three types of test input points are provided,
shown in Fig. 9g. The test input vector, tg, enables compu-
tation of closed- and open-loop system transfer functions
between every command and disturbance input to the controlled
element, yg, and every state, xp, and output, y. The test
input vector, ty, enables computation of closed~ and open-
loop system transfer functions between every measurement noise
input, v, and every state, xg, and output, y. (In cases where

Test

Measurement Test
Noise Open Loop
Test tv Measurement toL
Inputs Noise
ts
Commands ond
Disturbonces Outputs — Measurements
Hs 1 fu =L} n z
Ys Ym
Hm

States
X

Figure 9g. Test Point Subsystem

the outer-loop function is regulation to a constant value, or
where effective inner-loop error regulation properties are of
interest, the test input vector, ty, can be used to supply
surrogate command inputs.) The test input vector, tgpp, enables
computation of open-loop system transfer functions when outer-
loop error feedbacks are interrupted. Transfer functions
between error points corresponding to every command component
of yg and every output variable y can be obtained.
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® Cost Function. The cost function is in the form

Jo = E[y'Qgy + u'Rzul] (18)

where Qg and Rp are diagonal matrices. The fact that Qg
and Ry matrices are diagonal results in a cost.function
integrand which is a weighted sum of squares of the ele-
ments of y and u. This restriction stems from our belief
that the cost function should be interpreted as an index

of performance, and to this end should consist of a weighted
sum of squares of variasbles indicative of performance for
each particular application. This set of variables must be
contained in the output and control vectors, y and u, by
virtue of their respective definitions.

The separability principal is used in obtaining the optimal
controller solution. This leads to the use of two separate
cost functions, Jy and Jy:

Jg = f (y'Q y+u'R u) dt (19)
o

JF = E[<£C—XC)'(}?C—XC)+(;ES_XS)'(J?S_XS)]

Minimization of these functions permits the separate solution
of the optimal regulator and filter problems, as an alterna-
tive to combined solution using Jg.
The process noise vector, w, and measurement noise vector, v, are
independent, zero-mean Gaussian white noise processes. Their intensities

are given by the diagonal Q and R matrices, respectively, i.e.,

E[w] = E[v]l] = o0 (20)
Pyt = \Q,\ (21)
ot = R (22)

To this point, the matters dealing with optimal control are more or
less standard. Here, however, we need to recognize that many measure-

ments in flight control systems are, for all practical purposes, noise
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free. Thus, some or all of the measurement noise components may have
zero intensity. This, in turn, implies an ability to solve the singular
Kalman filter problem.

In the following paragraphs the definitions of the partitions of the
problem formulation shown in Fig. 9 are specialized for the flight con-

trol system application.

B. FRECOMMENDED FORMULATION FOR
FLIGHT CONTROL SYSTEMS

1. Stochastic Commands eand Disturbances

Stochastic commands may be represented by first- or second-order shaped
white noise. First-order shaping can be used to represent maneuver require-
ments, guidance source inaccuracies, or inadvertent pilot inputs. One form

of the second-order shaping filter equations is:

Xg) = —WgyXgy + /2057 W (23)

Xgp = ~WgpXgp + /Agp Wy (24)
Yg1 = ¥g1 + Xgp (25)
%\T‘l = G}Z{S —I > QVTE = G}%SE ( 26)

To obtain first-order shaping merely omit the equations for iSE and QWE'

The output, ygq, is the sum of two independent first-order shaped
processes. One process might represent maneuvering commands and have
moderate level and low bandwidth. The second process might represent
guidance source inaccuracies, and have low level and moderate bandwidths.
Relatively little numerical data are avallable to guide selection of level
and bandwidth. Some data are contained in Ref. 14 and further suggestions
appear in Appendix B. Stochastic disturbances are mainly due to gust

effects. Gusts may be modeled by the Dryden form of the power spectral
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densities (Ref. 15). These power spectral densities correspond to first-
and second-order shaped white noige. The longitudinal (ug) and effective

rolling (pg) gust components are first-order forms:

Xg = —WgXgtJ20g W (27)
¥ys = Xg (28)
QG = g%s s Xg = Ug Or Pg (29)

Side and normal gust components are second-order forms:

Xg) = —WgXgy + J2agw (30)

kgp = ~WgXgp + Gp/v/2 Xg (31)
¥ = V32 xg; — (V3 - Dxgp (32)
%W = g ’ Vs = Vg T Vg

In each case ag represents the characteristic frequency of the particular
gust component. Second-order shaping may be approximated by first-order

shaping for simplicity. The form is:

g = —1.59% agxg + /2(1.500)ag w (33)
ys = XS (54)
Qw. = O‘y.es 5 YS = Vg or Wg (35)

This approximation preserves the half-power frequency, 1.59&&5, and the

rms value, Oygs of the second-order power spectral density.
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Additional background and numerical data can be found in pages 417-
L61 of Ref. 15, pages 654-660 of Ref. 10, and in Appendix B. '

2. Actuators

Actuation dynamics, activity, displacement limits and rate limits
almost always provide the main limitations on automatic flight control
system performance and frequently contribute to performance limitations
in manual control. For this reason inclusion of an actuation dynamic
model at some point in the optimal flight control system design cycle is
essential. Fortunately, actuation dynamics need not be modeled in detail.

Simple approximations capture the essential effects.

Consider the NASA VSTOLAND UH-1H helicopter actuation system (Ref. 16)
in Fig. 10. An agpproximation adequate for design purposes is shown in
Fig. 11. The approximation in Fig. 11 results in a reduction in order for
the actuation system model of three. The effective actuation lag is com-
puted by the method given in Appendix B. We have found it to be good prac-
tice to represent the effective actuation lag by its open-loop element,
1/s, and supply the actuator feedback gain via the optimal design process.
This practice results in accurate representation of the mean square (boost

actuator) control deflection and control rate in the cost function.

SERIES ACTUATOR

(75)2 BOOST
$2+2(.7) 75s +(75)2 ACTUATOR
Electrical Blade
Command 50 Cuff Angle
—_— Hi ——
( deg,blade) PARALLEL ACTUATOR $+50 | (deg,blade)
40 K
T s{(s+40)

Figure 10. Actuation System Block Diagram

Lo



SERIES ACTUATOR

EFFECTIVE
— | ACTUATION
LAG
Electrical Blade
Command 25.7 Cuff AngE
_ -
(deg, biade) PARALLEL ACTUATOR s+25.7 | (deg,blade)
X
o s

Figure 11. Approximation to Actuation System

Other quantities in the actuation system are frequently subject to
physical limitations. Series actuator displacement and parallel actuator
rate are usually in this category, since both quantities are ordinarily
limited for safety-of-flight reasons. These quantities can either be
evaluated directly using variables existing in the plant formulation, or
by including additional state and output equations as described in Appen-
dix B.

3. Alrframe

The airframe can be represented by uncoupled longitudinal and lateral-
directional sets of equations. ILongitudinal equations may be written con-
veniently in terms of states u, W, q, 6, dp, 3¢, Xppgp, and the lateral-
directional equations in terms of states v, p, r, @, 8y, 3p, Xppg- The
last state in each set represents the stabilizer bar state. Crosscoupling
between longitudinal and lateral-directional systems has been found to be
relatively unimportant in connection with flight control systems design.
Specific sets of state equations for the UH-1H used in our examples are

given in Appendix B.

Airframe models which are more, or less, detailed than the one described

above may be appropriate for a particular application. The problem most

often faced is that of obtaining a simplified model for flight control
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system design purposes from a very high-order, detailed model of the
airframe. We shall assume that the high-order model is linear and sta-
tionary. Simplification of this model is accémplished by making low-
_frequency approximations to very high-frequency modes. This process is
called "aggregation," e.g., Ref. 17. "High" frequency is interpreted
relative to the usual range of flight control systém modes, typically

the band 0.0 to 50.0 rad/sec. There are at least two methods for develop-
ing the simplified model. In the first (e.g., Refs. 18 and 19), a modal
representation of the system is constructed in terms of its eigenvalues
and eigenvectors. Derivatives of modal coordinates having eigenvalues
with modulus larger than 50.0 are approximated by zero. The approximated
representation is reconstituted to the original coordinates after algebraic
equations® of the system are eliminated by substitution. These algebraic
equations become additional output equations for the reduced-order model.
Dependencies of the measurement and original output equations upon the
variables of these additional output equations must be eliminated by sub-
stitution. A compact exposition of this method is given on pages 34-36 of
Ref. 18.

The second method is in the spirit of the first but does not require
construction of a modal representation of the system. It is frequently
the case that modal subsystems which couple only weakly with the rest of
the system can be identified by inspection of the equations of motion.
(Inspection may be by comparing eigenvalues of the subsystem with eigen-
values for the total system, for example. TIf subsystem eigenvalues are
nearly equal to corresponding total system eigenvalues, then coupling is
weak.) Weakly coupled subsystems having eigenvalues larger than 50.0 rad/
sec may be replaced in the equations of motion by approximate algebraic
equations which represent the static (low-frequency) characteristics of the
subsystem. This approximation has been applied in Ref. 20 and in Appen-

dices C through H of Ref. 21, for example.

*These algebraic equations result from those equations for which deriva-
tives of modal coordinates are set to zero.
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4. Kinemetics

It is essential that all kinematic relationships which are in differ-
ential equation form be included in the plant. These may include not

only obvious kinematic relationships such as

<
It

but also error integrals which may be required in the cost function such

as

hey = ho-h (38)

{VeI R (39)

5. Measurements

Equations for the measurements assumed available must be accurate with
respect to sensor location and orientation effects. Sensor noise charac-
teristics must be represented with reasonable fidelity. Most flight con-
trol system measurements are free from broadband (i.e., "measurement!)
noise as a practical matter. Accelerometer measurements are a possible
exception, however, especially when installed in a vibratory environment.
Some flight control measurements, such as glide slope error for example,
have correlated noise (e.g., Ref. 22, Appendix B). It is essential for
proper formulation of the problem that correlated noise be represented by

shaped process noise rather than by white measurement noise.

A list of the conventional sensors which have been found useful in
flight control systems is given in Table 7. A summary of special consid-
erations in using, orienting and locating certain of these sensors follows
Table 7.

L5
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TABIE 7. CONVENTIONAL FLIGHT CONTROL SENSORS

Longitudinal Axes

q

6

o

h

h

i

R

R

Vg

ax

az

(a—ag)

Vas

6B/5e

5c/5t
Lateral

P

o

P

r

¥

v

v

(¥=2)

a)

(B -Bg)

5A/5a

6R/ar

Body axis pitching wvelocity

Pitch attitude rate

Pitch attitude

Rate-of-climb (barometric or barc-inertial)
Altitude (barometric or radar)

Glide slope deviation (angular measure)

DME or IRS derived slant range

Derived DME or IRS slant range rate

IRS ground speed

Body-fixed longitudinal acceleration

Body-fixed normal acceleration

Aerodynamic angle of attack

Airspeed

Longitudinal cyclic pitch or elevator deflection

Collective pitch or power lever deflection

Body-fixed rolling velocity

Bank angle rate

Bank angle

Body-fixed yawing velocity

Heading rate

Heading (magnetic or gyro compass)
Localizer or VOR deviation (angular measure)
IRS drift angle

Body-fixed lateral acceleration
Aerodynamic angle of sideslip

Lateral cyclic pitch or aileron deflection

Tail rotor collective pitch or rudder deflection
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Special Considerations

ax: Body-fixed longitudinal acceleration is sensitive to orientation
and location effects in the airframe. Location effects are secondary,
but near c.g. alignment is preferred. Orientation effects are important
and are usually dictated by alignment with the flight path in the flight
regime where close groundspeed or airspeed control is desired. In these
instances it is often desirable to use "longitudinal acceleration inde-
pendent of pitch," i.e., let ay 2 ay — g sin 6 be the effective measure-
ment, by combining ayxy and g sin 6 at the outset. This results in an
approximate measurement of VT when both quentities are referenced to/
aligned with the reference flight path.

a&: Lateral acceleration is sensitive to location effects. This is
frequently used to advantage in flight control systems in order to create
a surrogate p measurement. By locating the accelerometer a distance
x = —Ygp/Ngp ahead of the aircraft c.g.,* one obtains ay and B transfer
functions for dg inputs which are identical over a broad range of frequen-

cies except for a scale factor.

aé: Normal acceleration is sensitive to both orientation and location

effects. Preferred values depend upon the particular application.

agz may be used to extend the bandwidth of the barometric rate of climb
measurement which has an inherent lagging characteristic. In this case,
the accelerometer should be located cloge to the aircraft c.g. and should
be oriented so that its sensitive axis is near vertical at trim for the
flight regime where close rate-of-clinb control is desired. This same
location and orientation is appropriate when the az measurement is fed
back to collective pitch in order to alter the apparent mass of the air-
craft for flight path control.

Normal acceleration can also be used to create a surrogate o measure-

ment via proper location. By locating the accelerometer a distance

*That is, at the instantaneous center of rotation with respect to the
tail rotor collective control.
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Iy = ZgB/MsB ahead of the aircraft c.g.,* one obtains aé and o transfer
functions for &g inputs which are identical over a broad range of fre-
quencies except for a scale factor. This use of normal acceleration is
frequently impractical for rotorcraft application because Zgp may change
by more than an order of magnitude between hover and maximum speed and is

usually positive.

For all of the above uses of normal acceleration, it is necessary to
wash out, bias out or cancel the gravitational component of the accelera-
tion measurement. This requirement is not evident in the control design
problem because linearized perturbation equations are typically used wherein

the constant gravitational component does not appear.

qQ, r, 6, ¥: Airframes requiring large amounts of artificial damping
or which must execute gross maneuvers must make careful use of superfi-
cially equivalent measurements, i.e., of q and § or of r and {. For exam-
ple, an airframe requiring heavy pitch axis damping will lose that damping

augmentation in steeply banked turns if § is used in lieu of q since
& = qcos ®—1r sin @

On the other hand, use of g in lieu of & when the requirement is for ver-

tical path equalization will result in opposition of steady turns since
qQ = © cos ® + v cos © sin @

(a—ag), (ﬁ-—Bg): Measurements of aerodynamic angle of attack and
angle of sideslip are frequently unsatisfactory in rotorcraft applica-
tions. These measurements, when used, require correction for installation

and location effects.

*That is, at the instantaneous center of rotation with respect to the
longitudinal cyclic pitch control.
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6. Outputs

Numerous linear combinations of the state variables in a given appli-
cation are of interest because of their relevance to the physics of the
problem, to performance or flying qualities specifications or because of
their pofential use in the cost function. Our recommendation is that all
measurement kinematic components (yy in Fig. 9), and candidate measurement
quantities, all candidate quantities for use in the cost function, all
quantities which may encounter physical or specification limits be included
in the output vector, y. Virtually all of the variables in Table T may be
included in the output vector. Additional variables associated with the
actuation system such as series actuator displacements and parallel trim
actuator rates must be included when appropriate to the particular appli-

cation.
C. EXAMPIE FORMUIATION

Application for design of a longitudinal flight control for the UH-1H
helicopter at hover is used for illustrative purposes. DPertinent data for

the primary design objectives are summarized in Table 8. Vector definition

TABIE 8

UH-1H LONGITUDINAL FLIGHT CONTROL SYSTEM

Flight Condition:
Hover

Functions:

Rate-of-climb command
Groundspeed hold

Bandwidths: radfsec

Cyclic (DB) 25.75
Collective (DC) 25.73
Piteh (TH) 2
Rate-of-climb error (HDE) 1
Integral of HDE (HDI) 0.
Groundspeed error (XD) o]
Integral of XD (XDI) 0
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for the plant, measurements and outputs are given in Table 9. Note that
each vafiéble has an assoclated computer mnemonic, as indicated below

each vector. With the exception of the state variables, the mnemonics

are input to the software (Ref. 23) by the user, and are used to produce
the data from the software in report-ready form. In the case of the

state variables, however, the mnemonics are internally generated by the
software. The names X01, X02, ..., X05 are reserved for the shaping filter
states, while X06, XO7, ..., X15 are reserved for the controlled element
states. Most matrix data in the remainder of this report were produced by
the software just described, and the mnemonic conventions apply through-

out.

Throughout this report, it is important for the reader to maintain the
distinction between variables which are states and variables which are
measurements, even though the same variable names are used. This confusion
could arise with the variables q, 6, ®p and 3p. For instance, we see that
the state variable &p (the actual longitudinal cyclic deflection) is defined
as the integral of the control variable éB, via the equation x = Fx +Gu+TIW.
Once the controller has been defined, though, we will see that the measure-
ment variasble &g (which may only exist as a quantity inside a processor) is
not the integral of the control variable éB. We will continue to point out

this distinction in the text.

The software and its associated mnemonics do not suffer from these ambi-
guities. For example, the state variables g, 9, dg and dp are X08, X09,
X10, and X11, whereas the measurements ¢, 6, dg and 3¢ are Q, TH, DB and
DC (see Table B-1).

Table 10 presents the literal form for the F, G, I', and Hy matrices
for the example problem. These matrices are composites of the matrices
which comprise the problem formulation (Fig. 9) as indicated in the table.
The numerical data for the example problem in terms of these problem for-
mulation matrices are given in Table 11. The numerical data for the F, G,

T and Hg matrices are given in Appendix C.

Throughout the report it will be useful to present factored transfer
functions. The notation used is explained in Table 12. Table 13 presents

selected factored transfer functions for the example controlled element.
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TABLE 9. EXAMPLE PLANT DATA
VECTORS

Shaping Filter States

i1

x5

{ug Vg he}
{xo1 x02 x03}

Controlled Element States

1

X0

114

{u W a 8 5B 8¢ Jhedt XaaR [xas}

{X06 x07 X08 X09 X10 X171 X12 x13 x|

Process Noise

w' & {Wug Wwg Whe Wu Wy Wgq Wg Wap W, Wfﬁedt YXBAR wff{dt:‘
= {PUG PWG PHC PU PW P2 PTH PDB PDC  PHD PXB PXD }
Controls
u' 2 { 58 B¢ }
= {oBD DCD}

Shaping Output

1 2

Vs {ug Wg hc}
= {jue we HDC
Measurements
z2 2 {h q 6 &g ® he Jhedat x [xadt}
= {HD Q TH DB DC HDE HDI XD XTI }
Qutputs
vt 2 {h a e 85 Bz he Jhedt % Jxat o  wg}

El
O

TH DB DC HDE HDI XD XDI AOA  ASE }
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TABIE 10. LITERAL FORMS FOR F, G, I' AND Hp MATRICES

i WG HDC U W Q TH DB DC HDT XBR XpI* Ast?
| 7
S\/YiN 0 0 | 0 0 0 0 0 0 0 0 o o | wm
0 1.5 [ Vapl/te O ] O 0 0 0 0 o 0 0 0 o | we
I
0 0 —op | O o 0 0 0 0 0 0 0 o | mc
he
—Xu ~Xw ¢} ‘| Xu Xw Xq—Wo -8 cos 6o Xsg Xop 0 X3p 0 0 U
~Ty o o | 1z Zug Zg+Uo -8l 8, Zgg Ze O Zgg O o |w
—My My Y | My My Mg Y Msp  Msg 0 Mg O 0 Q
0 o o | o 0 1 0 0 0 0 0 0 o | ™
|
0 0 o] o 0 0 0 o 0 0 0 0 o | oB
|
0 o o | o 0 0 0 0 0 o 0 0 o | nc
o] 0 1. :—si.n 6o —CcO8 8o 0 =V, 0 0 ~€ ] ] 0 HDI
0 0 0 : 0 0 497 0 0 0 0 =33 o o | xBr
0 0 o | cos o, sin e, 0 0 o o o o -e x |x*
—cos 6 —-sin 8y 0 | cos 8 sinego 0 0 o o} 0 0 x -¢ | AsT®
Fg O
F = Hg = I 8¢DI used in hover example;
Cclg  Fo AST used in 100 kt example

(continued on following page)
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DBD DCD

] o 0
0 0
o 0
_g__b_
o 0
o 0
g 0
1 0
0 1
o 0
o 0
0o 0
o o0

WG

HDC

DB

neC

HDI

(Continued)

PHC PU

XI5V I, © 0

TABLE 10.
PUG PHG
Wiz
0
0 0
0 0
o} 0
0 0
[o] l¢]
0] 0
[o] [¢]
0 o]
0 0
[¢] [¢]
0] 0]

S, o
0 1
0 0
o] 0
0 (¢}
[¢] o}
0 (¢}
] o]
0 0
0 0
0 0

8XDI used in hover example; ASI used in 100 kt example.

PQ PTH PDB PDC PHI FPXB PXI® psg?

1
of{w
o | we
o | HOC
ofjvu
ol|w
olaq Ts
o m re
o{ B
o] onc
0| w1
o | xBr
o | xp1®
1 J As1®

(concluded on following page)
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TABIE 10. (Concluded)

uG WG HDC ) W Q TH DB C HDI  XBR  XDI®* ASI®
i 0 0 0 sin g, —cos 6o 0 Vg 0 o} 0 0 ] o— HD
) 0 0 0 0 1.0 0 0 0 ) 0 0 o]a
0 0 ) 0 0 0 1.0 0 0 0 0 ) o | m
o o 0 0 0 ) 0 1.0 0 ) 0 o) o| B
) o 0 0 0 ) 0 o 1.0 0 0 0 o | nc
0 0 1.0 —sin g, cos 6, 0 VT 0 0 ) 0 0 0 | HE
= HR
) 0 0 0 o o) 0 ) 0 1.0 0 0 0 | m1
0 0 0 cos Bo sin 6 0 0 0 0 0 0 o o | xob
) 0 0 ) 0 0 0 ) 0 0 0 1.0 o | xor®
0 0 o 0 0 ) 0 0 0 0 0 0o 1 oE AsT®
—08 B, -sin §; O  cos 8y sin 8o 0 0 0 0 0 0 0 o[ asE®
Xy Ky 0 Xu Xw Xq -8 cos 8 Xsg X0 0 Xsp 0 0 | axp®
|
(T A Z“ i % o B %8¢ A o o |ame
= IxMy) - ) = LMy - My - Oy = Mg — bt - LxMeg [
0 -1fNg, © 0 1/Voy 0 o o 0 0 0 0 0 | aoa

8XDI used in hover example; ASI used in 100 kt cruise.
bXD used as measurement in hover, output at 100 kt; ASE used as measurement at 100 kt, output in hover.

CUsed to investigate acceleration measurements in 100 kt case.
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TABLE 12. NOTATION FOR FACTORED TRANSFER FUNCTIONS

CASE: UH1H HOVER 122LONG 31-JAN-T9 CONTROLILED EIEMENT TF'S —=——— Title
DENOMINATOR:

1.0000 High-frequency gain

. Q0000 . 20000 .Q0Q0e . 00000
E 389l ; ( ) )« )}<———- Real poles
(( .1e3%9 , -1893k , .19576E-01, .18833 )) Complex poles
(@t T okss . muse ))& e

2 2

< .11863E-01> = Low-frequency gain
NUMERATOR: TH/DBD Numerator title
-. 16910 High-frequency gain

( .eo0c0 ) ( .ocec0 )y ( .oce00 Y (~.T9065E-02)
(.33%0 ) (.58 ) }=——— Real zeros

< L, 1T44SE-03> Low-frequency gain

8 ~. 1691535 — .00T9) (5 + . 333) (s + . 3918) o
58 (s +.38494) (52 +2(.10339) (. 18934)s + (. 18934)2][ &2 + 2(.26279) (.92T1T)s + (.9271T)2]

- 1691(s+.333) _
[52+2(.10339) (. 18934 )= + (.8934)2] (&2 + 2(.26279) (.92T1T)s + (.92T17)2]

Alternately, the notation can be considered shorthand for expressing factored polynomials:

K
(=)
((C, ®, tw, ® «/1—;2))

<Kzof >
corresponds to

K(s + z)(s2 + 2tus + of)

Note that the complex poles and zeros have four components:

((damping ratio, undamped natural frequency, real part, imaginary part))
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TABLE 13

SELECTED CONTROLLED ELEMENT TRANSFER FUNCTIONS

CASE: UH1lH HOVER 122LONG 31-JAN-79 CONTROLLED ELEMENT TF'S

DENOMINATOR:
1.9222
( .090209 ) ( .99922 )y ( .38739 ) ( .087089 )
{ .38494 )
(( 12339 ;s 18934 y «19576E-91, .18833 ))
(( .28279 s 092717 s «24365 s +89459 1B
< .11883E~921>
NUMERATOR: TH/DBD
-.1G6919
( .0090¢ ) ( .2¢2083 ) ( .998022 ) (-.79065E-82)
( .33392 ) ( .39184 )
< .17445E-93>
NUMERATOR: TH/DCD
~.33238E-32
( .2983¢9 ) ( .094089 }y ( .92339 ) ( .18854E-81)
( .33320 ) (-11.2793 )
< .13442E-93>

Shorthand notation is used to express factored poly-
nomials. For example,

K(s + 2)(s2 + 2tws + of)

corresponds to

K

(2)

((t, o tw, m~/1_§2))
{KzaP)
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SECTION IV
CONTROLLER SYNTHESIS

Thée controller optimal synthesis can be divided into three distinct

steps:
® TFilter-observer synthesis
@® Regulator synthesis
® (Combination of the above into the controller

This section starts by reviewing some important linear stochastic control
facts in order to define the synthesis problem and solution. The solu-
tion of the singular filter problem, and the implications of requiring a
solution which does not use differentiation, are considered. This is fol-
lowed by specific recommended procedures for the synthesis of flight con-

trol systems and illustrative examples of their application.
A. STOCHASTIC OPTIMAL CONTROL FACTS

Stationary plant state and measurement equations and process and
measurement noise characteristics for the system which is the object of
optimal control are summarized in Table 14. The notation and definitions
used follow those customery in the literature (e.g., Ref. 1). We have
made specific provision in Table 14 for noise-free measurements via the

zo partition of the measurement vector.

It is well known (e.g., Ref. 6) that the linear stochastic optimal

control solution with respect to the cost function

Jde = E[y'Qgy + u'Rgul (k0)
where the plant outputs are
y = HgX
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TABIE 14 LINEAR PROBLEM MODEL

States
X = Fx+Gu+Iw , =x(0)=xg
Measurements
Z1
zZ = } = Hx + v
Zo
zZqy = H1x + vy
7~ = T—T,Y.l.v/o
2 =l 2

Noise Characteristics

E[w] = O s E[v] = O©
Efw(tq) w'(t)] = @5(tp — ty)

can be partitioned into solution of two separate problems. These are
the (Kalman) filter and regulator problems. The combined solution, shown

in Fig. 12, results in the linear optimal stochastic controller.

The filter problem is solved to minimize the mean square estimation

error via the cost function:
Jp = E[(R —x)" (X - x)] (41)

Solution results in the filter gain matrix, K. In formulating the problem

we have assumed that some or all of the measurements are noise free. Thus,
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Figure 12. TForm of Linear Stochastic Optimal Control Solution

the measurement noise intensity matrix R may be singular. This, in turn,
implies difficulty in obtaining the filter solution by computational methods
which depend on the existence of R_1. Appendix A presents an alternative
solution technique which yields the required partitions, Kq1 and Kqp, of
the filter matrix, K, for this singular case. Solution of this singular
filter problem is a key contribution for optimal flight controllers because
most measurements in flight control applications are practically noise free.
It also enables us to obtain lower-order controllers which are necessary

for practical flight control systems.

The regulator problem is solved to minimize the cost function:
{eo]
JR = f (y' Qgy + u' Rgu) dt (k2)
o]

Solution results in the regulator gain matrix, C. To be consistent with
the physical constraints on control use in flight control applications

we shall require Rg to be non-singular. The central issue in the regu-
lator problem is the selection of appropriate 3R and RR matrices. The
selection must produce adequate performance yet not waste control resources.
A methodology for their rational selection is another key contribution of

this research.
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As depicted in Fig. 12 the "controller" is defined by the filter gain
matrix (X), the regulator gain matrix (C), and the equation;:

u = —C% (43)

In the flight control application we elect additional restrictions.
We shall require the plant to be stabilizable with respect to the avail-
able control points, and detectable with respect to those elements of y

which have non-zero weighting in Qg (Ref. 8)

The cost function shall be a weighted sum of mean square values of
variables having operational significance for each application. There-
fore, Qr and RR are restricted to be diagonal matrices because the meas-
urement matrix, Hp, can be used to generate all variables having opera-
tional significance except for the controls. However, the controls are
available in their operationally significant form by virtue of their

definition. Further, we shall require Ry to be positive definite.

Singular filters have order (number of states) which is less than or
equal to (n — mg), where n is the nunmber of plant states and m, is the
number of independent noise-free measurements. When the order is less
than (n — m2), differentiation of the noise-free measurements may be
required. Differentiation is undesirable for the flight control applica~
tion because very low level, broadband noise components of measurements
are a virtual certainty even if negligible from all other viewpoints. In
order to make differentiation of the noise-free measurements unattractive
as an optimal solution we resort to the artifice of augmenting the process
noise excitation of the plant. The added noise is specifically chosen to
cause the derivative of every noise-free measurement to contain an inde-
pendent process noise component. Mathematically, this is equivalent to

requiring chQré to be nonsingular (Appendix A).¥ The levels of the

*This solution for the filter problem having noise-free measurements
was reported by Uttam and O'Halloran, Ref. 25, pp. 327-332, but is not
recognized as the optimal filter.
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augmenting noise can be made very low, although numerical roundoff in com-
putation imposes lower bounds. When P2(Qré is nonsingular, the filter order
is exactly (nn-mg) and the filter can be realized using that number of inte-
grators. The levels of the augmenting process noise can be manipulated to
affect the closed-loop filter eigenvalues. This can be used to advantage
in controlling the range for the closed-loop filter eigenvalues. It is

also the reason we refer to the singular filter as the "filter-observer.”

Although augmenting the process noise excitation of the plant is an
artifice, it can be rationalized. The stationary, linearized, perturba-
tion plant equations we tend to regard as a true model are in fact an
approximation. Nonlinear, nonstationary effects and small terms in the

equations are neglected, as is the uncertainty in the values for the coef-

L N [P E_ o o PUUR U | -
Il Cerms we reciadlli. vIle gy 100

[H)

ficients 0 upon the augmenting process
noise as an aggregated representation of

effects.

k
these conveniently neglected

When T'p Qré is nonsingular, the optimal filter-observer has the struc-
ture shown in Fig. 13. (Figure 13 assumes for simplicity, and without loss
of generality, that the plant state definition includes the noise-free

measurements, zZp, as the x, partition.)

u :
Gi-Ki2 G2 . -
Ky ¢ PH, R
Ki2 ¢ (PFy + QT )(TQT)"
A
Z . K l Yo = X;(0) + K22,(0)
+ n
+ 9 + Xy
. I/s
+
F,,-K,ZFZ,-K,,H,,] Kiz
+ Fia - KizFaz- K Hya
[Fn'Klez:‘Ku Hu] Kiz
A
Zs Kp = Xp=12Zp

Figure 13. Optimal Filter-Cbserver Structure
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Given the regulator gains, C, in terms of the same state vector, the
controller structure and equations can be shown as in Fig. 1%, The coef-

ficient matrices in Fig. 14 are given by

Ap

[F11—KqoF21 —Kq1H1q + (G —Kq2G0)CFl

[K11, (F11—KqoFo1 —Kq1H11)Kqp + Fio —K1oFpp —KqqHyo]

w
55|
|

| O
[0 Kj2
DF = =C
| O I
- DF
A
Yo
P .
z + y +
—4—» Bp I/s Cr
+
y = Aej+Bpz , J(0)=7,
AF ~ u = CF/))"'DFZ

Figure 14. Form of Controller Solution
(Filter-Observer + Regulator)

This block diagram, and the matrices therein, corresponds to the
simplest form of the generalized controller equations. This form, includ-
ing the Ap, Bp, Cyp and Dp matrices, is used in the optimal design soft-
ware. Figure 15a shows this same controller, but here the block diagram

structure more clearly delineates the filter-observer and regulator
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a) Generalized Optimal Controller ¢/} All Measurements Noise-Free, m >n

| ]
! |
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P | [Fu - Kz FalKiz S L

n el
I | *‘[Flz'Klz Fzz] ]
l |
[Fn - Kig By Ky Hy JK ! z, |
u u
+ [Fiz= Ky Hy I Ke | I |-C

+Ki2F22 ! |

' Iy

] 1%z

| [ —
| |
Filter-Observer »}= Regulator - Observer =} Regulator ~=

g9

b) All Measurements Noisy

d) All Measurements Noise-Free, m = n

1
|
Z2 | R
s P
No observer needed ; all b~— Regulator —=

noise -free measurements |
become stafes

A
x c l u

x>

2]

[Fia- Kot}
i A
z, = noisy measurements x = states,
m, -of-them n-of-them
Z = noise - free measurements, m; +mp = m = total number
m, -of - them of measurements, m £n

Figure 15. Form of Controller Solution — Special Cases



components. Two limiting cases are also of interest. When all the meas-
urements are noisy the controller reduces to the block diagram of Fig. 15b;
the filter-observer reduces to the familiar Kalmean filter, while the regu-
lator is unchanged. With all measurements noise-free, and with fewer meas-
urements than states, the filter-observer becomes a pure observer, used to
estimate those states for which measurements are unavailable (Fig. 15c).

If the number of measurements equals the number of states, however, an
observer is not needed at all; the noise-free measurements constitute alter-

native states, and are subsequently fed to the usual regulator (Fig. 154).

The recitation of stochastic optimal control facts given above estab-
lishes the mechanics for obtaining solutions. The following subsections
present the techniques for purposeful application and illustrative exam-
ples. These subsections focus on two key questions:

® How should one choose the diagonal Qg and Rp
matrix elements for practical designs?

® How should one augment the process noise input
to avoid differentiators in the filter solu-
tion?
Answers to these questions complete the data required to synthesize an
optimal flight control system responsive to primary design goals. All

other data required are obtained from the physics of the problem.
B. FILTER-OBSERVER SYNTHESIS

In defining the shaping and controlled element states, the measure-
ments, and the outputs in preparation for optimal controller design we
have attempted to use experience and foresight to make the actual optimal
control calculations straightforward. For example, we have chosen to
include the integrals of variables when the indicial error response for
those variables must approach zero as time approaches infinity. Also,
care has been taken to insure that all pertinent variables are included

in the output vector.

Still, there are certain fine points which remain elusive. Foremost

among these is the definition of a desirable group of measurements,
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together with the corollary question of the adequacy of the associated
sensor array. The synthesis of the filter-observer permits these points
to be resolved. In particular, the synthesis provides.a definitive meas-
ure of the sensor array performance for a particular measuiemenf set. The
order of the cortroller will also be finalized because it is determined by

the order of the filter-~observer.

It is recommended that the filter-observer synthesis be addressed
before the regulator synthesis. This is mainly for the reason that once
the rms state estimation error and filter-observer eigenvalues are in
acceptable ranges (specified later) the designer need not reconsider the
filter-observer design in the later stage of optimal closed-loop system
assessment. (The same cannot be said for the regulator solution.) Fur-
thermore, controller transfer functions are immediately available at each
cycle of the regulator solution when the filter-observer solution is already

in hand. In this way, the controller tends to proceed in a top-down fashion.

The filter-observer has three main functions:

® It defines the quality of the instrumental complex
used to make measurements, via the rms state estima-
tion error. This is the primary reason cited above
for beginning the controller design with the filter-
observer synthesis. A stage is set upon which several
alternate sensor arrays may compete, and the best one
be chosen.

® It provides the best estimate of the total state
vector, given the available measurements, to use as
input to the regulator.

® It is the only place where the detailed properties of

the noise and disturbances can affect the controller

design.
This final function is perhaps the most important. In essence, the noise
and disturbance properties directly affect the closed-loop system in that
the filter-observer poles are closed-loop system poles. Filter-observer
poles are a function of the process and measurement noise levels. These
poles are the equivalent of the compensator poles in a conventional design
in that they adjust the controller behavior as a function of the distur-

bance enviromment. This is analogous to the adjustment of washout and
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complementary filter break frequencies appropriate to the command, dis-
turbance and noise environment in conventional design practice. In the
course of the filter-observer discussion we will see how these same poles

affect the controller in the command environment.

Steps in the filter-observer synthesis are summarized in Table 15
for ready reference. These five steps are elaborated in the following

paragraphs and are illustrated by examples.

TABIE 15. FILTER-OBSERVER SYNTHESIS

Specify process and measurement noise levels
based on physics (Q and R)

Avgment process noise to get independent noise
on the derivative of every noise-free measure-
ment

Compute closed-loop filter eigenvalues and rms
estimation error

Change sensor array if rms estimation error is
extreme

Adjust augmenting process noise if eigenvalue
range is unacceptable

1. Physicael Components of Process
and Measurement Noise

The process noise components which are used to generate shaped command
and disturbance inputs to the controlled element have levels which are
determined by the physics of the operating environment. In practice,
these levels may be definitively established, as in the case of gusts,
or may merely be estimates, as in the case of some commands. Here, we
assume the noise levels which are features of the environment are known.
Measurement noise components should also be based upon the physical situa-
tion. For example, it is reasonable to assume that rate and attitude

gyros and actuator position pickoffs provide noise-free measurements.
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Measurement noise on body-mounted accelerometers may or may not be
regarded as significant depending upon factors specific to the applica-
tion. If significant, measurement noise levels may be inferred from the
threshold and linearity specifications for the particular accelerometer
instrument. In the case of Microwave Landing System (MLS) guidance, for
example, the measurement noise (power spectral density) level can be cal-
culated from either the levels of error budget power spectral densities
(e.g., Ref., 25) for the broadband sources, or from measured power spec-

tral densities.
2. Auvgmenting Process Nolse Components

The requirement to differentiate any noise-free measurement can be
avoided if the derivative of every noise-free measurement contains an
independent component of process noise.* One means by which this condi-
tion may be satisfied is to simply include an identity partition in the
controlled element I', matrix (refer to Table 11). This identity parti-
tion is in addition to any columns of the I'c matrix which arise from the
problem physics. A corresponding null partition must be included in the
shaping I'g matrix to insure dimensional compatibility. Subject only to
the assumption that no commaend or disturbance input is a noise-free
measurement, this provision and the ability to specify the levels of the
augmenting process noise arbitrarily are sufficient to provide an inde-
pendent component of process noise in the derivative of every noise-free

measurement. That this is so is verified by the following equations.

*Alternatively, there will never be a requirement to differentiate
any measurement containing measurement noise. However, adding measure-
ment noise for the sole purpose of avoiding differentiation of a meas-
urement is unattractive because it increases the order of the filter-
observer. The order increases by one for each measurement so treated.
Practically, this would require an increase in controller complexity.
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x = {XS} R (1)

X Te
*s
z = [FyHg Hy] { } + v (45)
X
z = « + [FyHgTg + HyTolw + -+« (L6)

Inspection of [FyHgT'g + HyT'c] reveals which augmenting process noise
components must have non-zero levels. This inspection proceeds row-by-row
for only those rows which are associated with noise-free measurements.

An array formed of these rows can be constructed.* This array must have
rank m,, where my is the number of noise-free measurements. Up to n-—mp
columns of this array may be eliminated without reduction of the array rank.
Any set of columns which are coefficients of the augmenting process noise
and which can be eliminated without reducing the array rank, may have cor-
responding zero levels in the diagonal process noise intensity matrix, Q.
The values for the remaining augmenting process noise levels must be greater

than zero, but are otherwise arbitrary.

The above approach to augmenting the process noise has been adequate
for all applications made to date. However, it is clear that augmenta-
tion of the T'e and I'g matrices by identity and null partitions, respec-
tively, 1s not required. Indeed, these augmentation partitions may be
completely arbitrary subject only to the restriction that I'o have full
rank.

3. Pilter Elgenvalues end RMS Estimation Error

The third step, that is, the computation of closed-loop filter-
observer eigenvalues and rms estimation error, is accomplished using the
software package (Ref. 23).

*This array is computed by the software as T'n.
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4. Changes to Sensor Array

Next, the rms estimation error is compared with target values for
closed-loop system performance. Since rms estimation error establishes
a lower bound on achievable closed~loop system performance, it is essen-
tial that no target rms performance value be exceeded by its correspond-
ing estimation error component and that significant margins exist. If
target values are exceeded, this is an indication that the sensor array
is inadequate with respect to variables measured, quality of measurement,*
location/orientation of sensors, or any combination of these factors.
Changes to the sensor array with respect to one or more of the above
characteristics should be made before continuing the controller synthe-
sis. On the other hand, if rms estimation error is exceedingly small with
respect to target values, this may be regarded as an invitation to explore
use of fewer or lower quality® sensors. Use of fewer noise-free measure-
ments, of course, requires use of a correspondinély higher-order filter-
observer. This tradeoff aspect must be borne in mind when exploring the

possibility for reducing the number of sensors.

5. AdJusting Augmenting Process Nolse

The final step is to inspect the eigenvalue range for the closed-loop
filter-observer. Eigenvalues with very large modulus (say, greater than
50. rad/sec) indicate that large gains will be required in filter implemen-
tation and may indicate excessive dynamic range requirements. Eigenvalues
with very small modulus (say, less than 0.1 rad/sec) indicate that very
slow closed-loop response modes arising in the filter-observer may be
present. These modes may be excited by command or disturbance inputs, or
as the result of differences between the real-world plant and the plant
model for which the filter-observer is designed. Some closed-loop filter
eigenvalues may be altered when some or all of the measurements are noise-

free. This can be accomplished by adjusting the augmenting process noise

*Tower quality measurements can only be explored when noise effects are
explicitly modeled.

Th




| 2

via changes in the appropriate columns of the I’ and Q matrices. Our
experience in application is that changes in the augmenting process noise
levels via the diagonal Q matrix are usually sufficient to obtained closed-

loop filter eigenvalues in the desired range.
6. Filter-Observer Synthesis Examples

This subsection provides illustrative examples for the filter-observer
considerations addressed in previous paragraphs. The application to be
described in detail is to the longitudinal dynamics of the UH-1H for the
hover flight condition. Table 16 is a data summary for the final filter-

observer design.

Consider the elements of the diagonal process noise intensity matrix,
Q, in Table 16. The associated mnemonics have P prefixes to denote pro-
cess noise. The remainder of each mnemonic has been used to designate the
differential equation each process noise component forces. The first three
element values are fixed by the physics of the assumed operating environ-

2
ment. The values given are o%g, G%g’ and Ofer respectively, because the

shaping filter gains, ﬁa)ug, JEwwg, and ,/2wp are contained in Ig.
The remaining nine elements of the Q matrix diagonal are augmenting process

noise. intensities. Notice that one of these intensities is zero.

Next, consider the elements of the diagonal measurement noise inten-
sity matrix, R. The associated mnemonics indicate the measurement in
which that measurement noise component sppears. All elements of the
diagonal R matrix are zero because all nine measurements are assumed to

be noise-free in this application.

Consider the rms estimation error in Table 16. Only two of the 12 rms
state estimation errors are non-zero. Those two values are for estimates
of the longitudinal and normal gust velocities. We can compare these rms

errors to the input rms gust velocities:

Oug = 2.06 GEug = 173 g 8.4% Oug
owg = 1.7 ngg = .054 °EWg = 3.2% Owg

(&
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TABTE 16. UH-1H, HOVER, FINAL FILTER DESIGN

Q MATRIX DIAGONAL, FILTER R MATRIX DIAGONAL, FILTER RMS STATE EST ERROR, FILTER
1 1 1
! 11 . [N | ! [N |
t 4,24 ! PUG ! 2.200 ! HD ! 3.173 ! x01
] [} ) 1 1 1)
! 12 ! r 2 ! v 2
2,92 ! PWG ! 0.022 v Q ! @3.541E-21! X2
! ! ! ! ! !
! r 3 ! t 3 ! t 3
! l.90 ¢ PHC 1 2.098 ! TH ! 9.0208 ! xo3
! ! ! ! ! !
! ! 4 ! ro4 ! t 4
! @.160E-84! P U ! 0.999 ! DB ! g.200 ! X086
! ! 1 ! ! 1
! !5 ! 15 ! t 5
! 8.100E-94! P W ! 2.002 t DC ! @.Be0 ! X7
] ! ' ! ! !
! 16 ! t 6 ! ! 6
! @.180E-24! P Q ! 2,002 ! HDE ! 9,200 ! x28
! ! ! ! ! !
! t 7 ! 17 ! v 7
! #.182E-85! PTH ! 2.9098 1 HDI ! 9,002 ! X289
! ! ! ! ! !
! 18 1 1 8 ! 18
! 9.198E-34! PDB ' 6.9008 1 XD ! 2.¢02 ! X182
! ! i ! ! !
! r 9 ! t 9 ! 19
! 9.182E-34! PDC 1 8.808 ! XDI ! g.e92 ! X11
! ! ! ! ! !
! !o1e - - ! ! 19
! @.1B30E-34! PHD v B.200 t X12
! ! ! !
! ! 11 ! !l
! 90.080 ! PXB CLOSED LOOP EIGENVALUES, FILTER ! 2. 200 tx13
1 1 . .
! 112 ! ! 112
! 8.120E-04! PXD - - Y 9.0902 ! X14
! ! . ' ! !
- - v 9.333 ! 1 - -
¢ 180, ! E13
! !
! !
! 15.6 12
v 182, ! EZL
! !
! !
1 6.315 t 3
1 182, ! E02
! !
K12 GAIN MATRIX, FILTER
1 2 3 4 5 6 v 8 9
HD Q TH p):] DC HDE HDI XD XDI

1
2.941E-28 -2.679E-39 -2.159E-87 ©.880 $.003 -8.286E-16 9,48 @.1955-88 0.000 ! E13
1
v 2
-6.087 -8.57 19.3 2.090 ©9.890 $.1B4E-37 ©.200 29.5 2.008 1 Ed1
]
?
~38.9 2.54 65.8 6.208 @.900 #.118E-36  @.900 -7.16 3.238 ' Egg
1
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Because the estimation error is a small percentage of the rms gust velo-
cities, the sensor array is judged to be adequate. In other applications,
it may be desirable to compute the rms estimation error as reflected in
the output vector, y, in order to verify that design performance target

values are not exceeded.

Consider the filter gain matrices K17 and Kio. K41 does not appear
in Table 16. This is the case because Kyq has zero columns when all meas-
urements are noise free. The Kip matrix in Table 16 (and other plant data)
is used in the structure shown in Fig. 13 to define the filter-observer

design.

Next, we focus attention on the filter eigenvalues, in the center of

Teble 16. Previously, we identified a rather arbitrary range of 0.1 to

this example fall within the acceptable range. Concerns with eigenvalues
on the high end of the range centered around the high gains which might
appear in the filter as a result. From the Ko filter gain matrix we see
that all gains are at moderate levels, thus corroborating the acceptability

of the eigenvalue at 15.6 rad/sec.

On the other hand, the eigenvalues at the low end of the range were
of concern because, in general, the filter eigenvalues become closed-loop
system roots. Closed-loop roots with modulus less than 0.1 rad/sec clearly
are undesirable. For example, they produce long tails in some of the tran-
sient response characteristics of the system. In fact, even the eigen-
values at 0.315 rad/sec and 0.333 rad/sec, for the example, could cause
unacceptable transient response tails. But we shall see presently that,
for this example and many other systems, these eigenvalues are not an

important concern.

This example constitutes a very interesting special case which has
practical value. Notice that the filter-observer structure shown in Fig. 13
implies that the controller and closed-loop filter eigenvalues can differ
only if [Gq — KqoGo] is not null.* However, the data for Kip, Gq and Go

*This is the case because all filter modes are uncontrollable with
respect to all elements of the plant control vector.
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in Tables 16 and 17 indicate that [G — KypGp] is null. Therefore, the
controller and closed-loop filter eigenvalues are the same, and the closed-
loop filter eigenvalues are independent of the regulator solution. Fur-
thermore, in this special case the controller eigenvalues are therefore
guaranteed to be stable. Stability of the controller-alone is usually
desired in traditional flight control system synthesis. It is therefore
important for us to recognize the causal factors which lead to similar

optimal controller designs.

One factor is the application of control through serially coupled
actuation subsystems. Another factor is noise-free measurement of the
actuator outputs. Together, these result in G4 being null and Gp being
sparse. Additionally, we observe that the only non-zero elements of Gp
occur in the actuator state equations. Finally, we have observed in numer-
ous applications that the coefficients of the actuator output measurements
in Kqo are zero as long as no noise-free measurement (other than actuator
output itself) depends explicitly upon the actuator output states. K12Go
is null when these two observations apply. We have already observed that
when [Gq — KqoGo] is a null matrix, the filter eigenvalues and the con-

troller eigenvalues are identical.

The filter eigenvalues are, in general, closed-loop system poles. They
do not, however, necessarily affect all aspects of closed-loop behavior.
For instance, those inputs which drive the plant controls directly through
a gain matrix result in closed-loop transfer functions in which zeros can-
cel the closed-loop filter-observer poles exactly. (These inputs are those
commands wherein error and integral error are noise-free, and have gains
in the By matrix equal to zero.) This reduces, to some extent, the impor-
tance of the filter eigenvalue location, since the modes they represent are
not present in some of the command transfer functions of the closed-loop
system. There remain, however, three areas where the filter eigenvalues
do play a role:

® The filter eigenvalues become roots of the controller
transfer functions. If the controller is used apart
from the total FCS (e.g., in a checkout phase) the

eigenvalue locations will partially determine the
controller's response characteristics.
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TABIE 17. CONTROL DISTRITBUTION MATRIX PARTITIONS

Gl MATRIX

1 2
DRD DCD
! 1
1 U.082 2.9083 1 E13
! ]
! P2
12,989 3.023 ! Ed1
1 ) 1
! 13
1 7.920 3.003 ! EG2
] ]

G2 MATRIX

1 2
DBD DCD
' o1
vog.a92 3.000 ! WD
1 []
: 2
!a.307 3803 ro0
' :
' L3
1 0. 000 2.0808 1T
1 1
' 1
11. 08 2.8a0 'y pB
: !
' 15
1 2.093 1,20 ' bC
! !
! ! 5)
v 3.829 3.009 1 1DE
: !
! b7
L 3.039 3.002 RTes:
1 ]
! 18
1 3,939 d.0d3d ! XD
[] ]
: 19
13,084 a.009 1 XDI
1 1

9



® The poles of the closed-loop system identified as
filter eigenvalues will not be cancelled exactly in
general by closed-loop system zeros for transfer
functions where the input is a disturbance. Often,
however, they nearly cancel with zero, and are thus
not much of a concern.

[ ] In the next chapter we will consider the behavior
of the closed~loop system in the face of various
nonlinearities and component degradation. These
off-nominal conditions have the effect of opening
or changing one or more of the feedback loops. This
will naturally destroy the cancellation of filter
eigenvalue poles by closed-loop zeros. Considera-
tion of filter eigenvalue location then becomes quite
important.

Turn attention now to the matter of augmenting process noise excita-
tion of the plant in such a way that differentiation of any noise-free
measurement is not reguired. Consider the process noise distribution
matrix, I, in Table 18. The upper and lower partitions of I are I'g and
ey respectively. The left and right partitions of I’ contain the coeffi-
cients of the process noise components arising from the problem physics
and arising from augmentation, respectively. Notice that the upper right
partition of I is null in accordance with our recommendation for augment-
ing I'gs and the lower right partition is identity in accordance with our

recommendation for augmenting TIq.

Consider the ', matrix for this example application in Table 19. The
first three columns of I'p> distribute those process noise components which
have a basis in the problem physics into the derivatives of the noise-free
measurements. The first two columns cannot contribute to the rank of To.
The last nine columns of I'p distribute the augmenting process noise com-
ponents. Column 11 cannot contribute to the rank of I'p; therefore, the
PXB component of the process noise intensity can be zero. (This is the
eleventh element in the diagonal Q matrix.) The remaining nine columns
of I'p, are linearly independent; therefore, I'p has full rank. Eight of
these nine columns are associated with augmenting process noise compo-
nents. The levels for these eight components must be greater than zero

in the diagonal Q matrix.
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TABIE 18. PROCESS NOISE DISTRIBUTION MATRIX
Coefficients of Pro-
cess Noise Components
Arising from Problem |
Physics | Coefficients of Augmenting Process Noise
==f=:f I
|
|
I
GAMMA MATRIX l
1 2 3 4 5 6 7 8 9 10 11 12
PUG PWG PHC | P U P W PQ PTH PDB PDC PHD PXB PXD
- I -
0.483E-21 ©.000 v.o00 | @.000 8.080 8.200 2.200 8.080 2,000 8.000 2.029 2. 900
|
|
2.200 B.734E-21 9,288 | £.009 . 009 2.009 2.9900 8,080 9. 089 2.080 2.029 8.086
|
6.000 2.000 2.447 | 9.000 ¢.000 2. 008 g. 2900 2.00¢ . 800 0.008 2. 200 2.602
|
________ e —
2.600 2.000 e.e68 | 1.02 2.002 .00 8.0608 ¢.000 9.0626 2.0290 2.988 8.000
1
6.000 2.0820 s.o00 | o.000 1.0 8.900 8,290 2.908 0.000 2. 090 3.0802 2.080
|
2.900 0.000 2.0802 : 2. 0690 8. 900 1.98 2. 008 8. 002 2.028 . 902 2.009 2.ea9
]
2.020 2. 008 2.080 | 2.090 2.000 8.008 1.20 2.980 ¢. 002 0. 030 2.889 2. 029
|
2.800 2.008 0.009 : 6.800 p.000 0.800 9.009 1.00 2.098 6,988 2.000 6.660
|
3.009 0.268 2.008 | .80 2,800 9,800 2.000 2.080 1.29 3.808 9.088 3,800
]
9.000 2.800 2.200 | 0.008 2. 000 0. 000 2.009 ¢.000 2,008 1.8 9.008 6.539
] .
3.000 3,099 ?.089 : #.002 2.029 3.8900 g.000 8,909 2.0283 ¢.0d8 1.008 ¢.009
|
2.000 2.06080 2.889 | 2,209 6.008 8.00¢ 0.002 2.009 2.082 2.0220 .08 1.8
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GAMMA2 MATRIX
1

PUG

2.922

3.892

9.433

8.4329

3.992

2.393

2.993

d.333

2.292

2
PWG

3.9039

J.833

d.222

0.9099

J.233

3.338

2.082

2.230

2.440

TABLE 19.

PHC

3.3232

8.2d9

2.029.

2.8332

4,883

3.447

J.089

8.0233

8.282

OF NOISE-FREE MEASUREMENTS

Jd.735E~31 ~3.998
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d.242
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PROCESS NOISE DISTRIBUTION MATRIX FOR DERIVATIVES
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The final filter-observer design summarized in Table 16 is the
result of three filter-observer design trials. The initial filter-
observer design is summarized in Table 20. This initial design differs
from the final only with respect to levels used for the augmenting pro-
cess noise. Thus, Table 20 can be compared with Table 16 to demonstrate
the substantial influence adjustment of augmenting process noise levels
may have upon closed-loop filter eigenvalues. Initial design levels are
larger for most components, and especially so for the u state equation.
The initial design has a range of eigenvalues which is unacceptable
because the smallest eigenvalue modulus is less than 0.1 rad/sec. This
design also is characterized by somewhat larger rms estimation error and
larger gains in the Kqpo matrix. Adjustment of the augmenting process
noise levels (by trial and error) brings the low modulus eigenvalue well

into the acceptable range (refer to Table 16).

Another interesting and practical dimension to filter-observer syn-
thesis involves use of different sensor complements. The study described
below explores the results of incorporating measurements of longitudinal
acceleration independent of pitch and normal acceleration. Application
in this case is for longitudinal dynamics of the UH-1H at a 100 kt level
flight condition. The baseline sensor complex includes noise-free meas-
urement of instantaneous vertical speed, pitch rate, pitch attitude,
longitudinal cyclic actuator output, main rotor collective actuator out-
put, rate-of-clinb error, integral rate-of-climb error, airspeed error,
and integral airspeed error. Five additional cases are considered in
terms of measurements added to the baseline measurement set. The char-

acteristics of these cases are summarized in Table 21.

Table 22 summarizes the design parameters, closed-loop filter eigen-
values, rms estimation error performance and the filter gain matrix for
the baseline case of the UH-1H at 100 kt. In the process noise inten-
sity diagonal matrix, Q, the fourth and subsequent elements are augmenting
proceés noise components. The intensities of these augmenting components
are kept constant in this study to the extent that the addition of noise-
free measurements permits. The baseline filter design is third order;

its eigenvalue range is acceptable, and the rms state estimation error
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Q MATRIX DIAGONAL, F
1

8,808

e G g S e b 1 G dm b S s e 4 G S b St B = G G e tem G O G e Ves bem b G S bem

g,.108E~

B.108E-

9.192E-

8.192E-

2,.130E~

3.138E-

?.10QE-

23

93

85

231
a3

23

231

- G b S b G b et s b G G G e P dep bes fm Une Sne gen

0
Zuw

o U
3
TN OO0

w®

PDB

PDC

14
PHD

11
PXB

12
PXD

K12 GAIN MATRIX, FILTER
2

1
HD

.20

~-2.16

-12.2

Q

g.022

-9.

39

2.50

ILTER

TH

#.9009

3.65

20.6

R MATRIX DIAGONAL, FILTER
1

2.809

¢.000

3,008

2.289

g.000

3.998

9,002

0.888

0.0098

BT BT AT ATt 0T i 1 0 bt S e b S e e 0 S b e b b e e o
I ST A T et e b bm 0 i G e s s 4 = b e e tm s b fm g gee

CLOSED LOOP EIGENVALUES, FILTER

1
! -!
1 9.333 ! 1
! 182, ! E13
! 1
! 1
! 4.93 ! 2
! 184. ! E@1
! !
! !
! B.281E-81! 3
! 180, t EB2
¢ !
4 5
DB DC

3.733 V.0899d

3.999 2.089

g.0890 0.009d

UH-1H, HOVER, INITTAL FILTER DESIGN
RMS STATE EST ERROR,

1
1 !
HD ! 3.569
(]
2 !
0 1 06.157
1
3 4
T ! 2.p00
t
4 !
DB t B.080
1
5 !
DC t 9,909
1
6 !
HDE { é,9d80
1
7 !
HDI ! B.022
1
8 !
XD ! 9.80849
(]
9 !
XDI t 8.0
]
!
! g.0e0
!
!
! 2.900¢0
!
!
! 6,082
t
6 7 8
HDE HDI XD
J.0d3d 3.939 ¥.9039

3.172E-27 0.900 9.153

#.978E-27 2.008 $.862

8L

G S b b amt tm b b e e Sm b e Gt Sma S g b e sew sme Fm S b S0 em SR S S S e b b b e b

X821

Xe2

Xe3

Xas

Xa7

Xd8

Xd9

X1g

X1l1

19
X112

11
X13

12
X14

XDI

J.909

g.099

0.0293

= ten T e G 4= e b v

FILTER

E13

EZ1

Ed2



g

TABIE 21. SENSOR COMPLEMENT STUDY

NORMAL ACCEIER-

CASE / TABIE VEASUREMENTS MEASUREMENT | o\RTRR LOCATION,
: NU Lo zx (f‘t) -
Bageline / 22 'h, q, 8, B, B8, h, None —
£ / s 45 Y5 OBy OCs fes
i .
I hedt, upg, [upgedt
AZP1 [ 23 | Baseline + a, at pilot's None 7.3
location
AzP2 / 2k Baseline + a, at ICRB™ None —29.86
A7ZP3 / 25 Baseline + aé at pilot's Razp = 10—lL T.3
location (ft/secg)g/Hz
AXp1 /[ 26 Baseline + (ay — g sin @) None —
AXP1+AZP1 / 24 | Baseline + (ax — g sin @) None 7.3

+ ay at pilot's location

aICRB denotes the instantaneous center of rotation location for longitudinal
cyclic pitch control inputs, Zgp/Mop-
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is acceptable although estimates of longitudinal gust and inertial velo-
city are not very accurate. The controller and closed-loop eigenvalues
are the same because the Kio gain matrix coefficients of DB and DC are

zero. (Gq7 and Gp are the same as in Table 17.)

In Table 23 we explore the effect of adding a noise-free normal
acceleration measurement. The principal effects are to lower the filter
order from third to second order, and to produce non-zero coefficients
for DB and DC in the Kio filter gain matrix. This latter change means
that controller eigenvalues will be a function of the regulator gains,
and the controller eigenvalues will not necessarily be stable. We assert
that non-zero coefficients of DB and DC in Kip arise because the noise-
free measurement AZP is an explicit function of DB and DC in the measure-
ment equations. The effect of the additional measurement in reducing rms
state estimation error is almost nil except for the normal gust state
which is halved.

In Table 24 we demonstrate the truth of the above assertion. Here
we relocate the noise-free measurement of normal acceleration, AZP, from
the pilot's station to instantaneous center of rotation for longitudinal
cyclic pitch control inputs.® The latter location results in elimina-
tion of the explicit dependency of the AZP measurement equation upon DB
since its coefficient (Zgp — #x Mpp) being zero defines fx for the
instantaneous center location. The principal change with respect to
the filter design of Table 23 is that the coefficients of DB are again

zero in the Kqp filter gain matrix.

*This location is frequently regarded as a desirable one for normal
acceleration measurement in fixed-wing aircraft. This is so because the
accelerometer measurement is then very nearly proportional to angle of
attack which, in turn, is ideal for augmentation of short-period dynamic
characteristics (Ref. 10, pp. L4h6-453).
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Data in Table 25 show the effect of using a noisy measurement of
normal acceleration. The differences by comparison with Table 23 are
that the filter order is increased from second to third order, and the
coefficients of DB and DC in the Kqo filter gain matrix are again zero.
Consequently, the controller eigenvalues are stable and are the same as
the closed-loop filter eigenvalues. Notice that for the first time the
Kq1 filter gain matrix has a number of columns greater than zero. The
rms state estimation error is not much affected by the normal accelera-

tion measurement noise.

Table 26 explores the effect of adding noise-free measurement of
longitudinal-acceleration-independent-of-pitch, AXP, to the baseline
measurement set. It is interesting to explore using this additional
quantity because of its traditional use in flight control technology to
provide smoothed, broadband airspeed feedback signals via complementary
filtering. The principal effects are to again reduce the filter order
from third to second order, and to produce non-zero coefficients of DB
and DC in the Kqp filter gain matrix. Somewhat to our surprise, there
is a small reduction in rms estimation error for normal gust velocity

and almost no reduction for all other states.

In Table 27 we explore the effects of adding noise-free measurements
of both normal acceleration and longitudinal-acceleration-independent-of-
pitch to the baseline measurement set. The principal effect is that the
filter is first order. Coefficients of DB and DC in the Ko filter gain
matrix are non-zero. The rms state estimation error is not changed
significantly with respect to values obtained when either acceleration

measurement was used separately (refer to Tables 23 and 26).

7. Re-Emphasis of Key Points in
Filter-Observer Synthesis

To conclude the design synthesis of the filter-observer, we empha-
size again the three ways the filter-observer affects the final controller

design:
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® The filter-observer synthesis process provides a
means for choosing the best sensor complex from
among many candidates. As a result, the quality
of the complex is also quantified.

® The filter-observer provides the best estimates
of the total state vector, given the desired meas-
urements, to use as the regulator input.

® The filter-observer provides the only direct means
for the noise and disturbances to affect closed-
loop system behavior. If the matrix [Gq — KqpGol
is null, then the controller and closed-loop filter
poles are identical. The controller poles are then
also guaranteed to be stable.

The above considerations lead to the recommendation that filter-
observer synthesis precede regulator synthesis. Because these are com-
pletely separable design processes, the filter-observer design can be
set aside once satisfactory performasnce is achieved, and work then pro-

ceeds with the regulator. This is the topic of the next subsection.
C. REGULATOR SYNTHESIS

The steps involved in synthesis of the regulator portion of the con-
troller are summarized in Table 28. Although ten steps are listed,
Steps 3 through 8 are repeated until all bandwidth design goals have been
addressed in any given application. These ten steps are elaborated in

the following paragraphs where required, and are illustrated by examples.
1. Cost Funetlon Control Welghtings

One element of the cost function diagonal control weighting matrix,
Rp, should be set initially to unity. This is permissible since one
coefficient in the cost function may be an arbitrary positive number.
The remainder of the diagonal elements are chosen in ratios to the first,
such that limitations of the physical controls, or upon their use, are
teken into account. These limitations may be the result of rate, author-
ity, or power limits or possibly the result of flying qualities con-

straints, e.g., avoid "throttle thrash." Specifically, the remainder
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TABIE 28. REGULATOR SYNTHESIS

10.

Set Rg ta accommodate limitations upon controls or their
use.

Order key varisble bandwidth requirements in decreasing
order.

Identify highest bandwidth requirement not yet addressed,
U .

Compute transfer functions
Output: Variable subject to w, requirement

Inputs: Variables satisfying prior w. requirements
which may serve as surrogate controls

All loops satisfying prior w, requirements
must be closed

Approximate above transfer functions at s = jun by
K/sn+1 .

Calculate (2ncu@)n+1 r/k2 for each approximetion (r is
cost function weighting on input variable).

Set smallest (2ncng)n+1 r/K2 value equal to cost function

weighting, qg, for variable subject to w, requirement.

Compute regulator solution with additional cost function
weighting, aqg.

Repeat from Step 3 until all bandwidth requirements are
addressed.

Change Rp to affect relative use of the available control
points; maintain ratios of Qp and Ry elements supporting
related control objectives.
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of the dlagonal elements is the ratio of the square of the limit on the
element having the unity coefficient to the square of the limit on the

control variable being weighted.

A particularly desirable alternative is to use the Rp values result-
ing from a previously completed solution at a nearby flight condition.
The Rp values used at this stage of design are ultimately modified in
the last step.

2. Order Key Varleble Bandwilidth Requirements

Designation of key variables and their associated control bandwidth
requirements define the primary design goals for regulator synthesis as
explained in Section II. The ordering of these key variables and thelr
control bandwidth requirements according to decreasing bandwidth provides
a rational basis for systematic synthesis. This approach results in
satisfaction of the more stringent, high gain, inner loop, high band-
width requirements first; the next most stringent, and so on. Proceed-
ing in this manner assures that the more stringent of either all prior
bandwidth requirements or the minimum system augmentation necesgsary to
support the immediate bandwidth requirement is met at each stage of
design. It is also interesting to note the similarity of this procedure
to the one described on page 664 of Ref. 10 for synthesis via frequency

response methods.
3. Computation of Transfer Functions

Each bandwidth requirement is addressed in turn, starting with the
highest. Consider the highest bandwidth requirement not yet addressed.
(We shall designate this bandwidth by U since it is approximately equal
to crossover frequency, as demonstrated in Section II.) Transfer func-
tions are computed for the variable which is subject to the bandwidth
requirement. The input variables for these transfer functions are
selected by the designer from among the controls and all variables
satisfying prior bandwidth requirements. (The latter variables may be

thought of as surrogate controls.) If the designer is unfamiliar with
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the conventional bases for selection (e.g., airspeed is controlled with
pitch attitude in cruising flight), all of the above named variables may
be included. Later steps will result in an optimal selection. All loops
satisfying prior bandwidth requirements must be closed when computing

these transfer functions.
L. Approximetion of Transfer Functions

Approximations to the computed transfer functions are required for
the frequency region near d,. The form of the approximations required
is K/sn+1. There are two viable ways for obtaining these approximations.
The first, and easiest, method is to simply approximate the transfer
function by its magnitude asymptote at s = J®We. The appropriate phase
approximation is carried in the sign of the gain for the approximation
and the value of n + 1. The second method involves finding the tangent
to the Bode plot at s = jwe. The phase approximation is again carried in
the sign of the gain for the approximation and the value of n + 1. Either
method results in a pair of values for K and n for each transfer function.
The values are somewhat dependent upon the approximation method used, but
the effects of this dependency are minimized by the manner in which K
and n are ultimately used. It is our recommendation that one approxima-

tion method be used throughout the regulator synthesis, however.
5. Obtaining the Cost Function Coefficient

The cost function coefficient, qp, for the variable subject to the
current bandwidth requirement is determined next. (qR denotes an element

of the diagonal matrix, Qp.) The quantity
(2na§)n+1r/K2

is calculated using the K and n values for each transfer function approxi-
mation. r in the above quantity represents the cost function weighting

coefficient for the control or surrogate control variable corresponding
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to the particular transfer function. This may be an element of the

diagonal Rg matrix or an element of Qg determined in a previous step.

ag for the current bandwidth requirement is set equal to the small-

est calculated value for the above quantity.

This step contains the key to understanding of this approach to regu-
lator synthesis. The quantity being calculated is an evaluation of the
effectiveness of each control or surrogate control variable for achiev-
ing the specified bandwidth. ILarge values for qp indicate low effective-
ness and vice versa. The lowest value for gy is picked so as to insure
that the most effective control (or surrogate control) varisble is used

to achieve the specified bandwidth.
6. Continuing the Regulator Synthesis

The next step is computation of the regulator solution using the
additional cost function weighting coefficient, qr. At this point the
designer is ready to address the next bandwidth requirement and so returns
once again to the step for computation of the appropriate transfer func-
tions. The sequence of steps from that point repeats (at least in prin-

ciple) until all bandwidth requirements have been addressed.

As experience is gained with the controlled element and the series
of regulator design steps, the designer may find that several, or all,
bandwidth regquirements can be addressed simultaneocusly. The reasons for
this are that uncoupled or weakly coupled or serial subsystems within the
controlled element often present situations wherein the effects of loop
closures satisfying prior bandwidth requirements upon the various trans-
fer functions are known or easily estimated without recalculating trans-
fer functions. This is especially the case when the effect of one (or
more) prior loop closures is nil, or if one (or more) prior loop closures
is at very high gain. In the latter case, ratios of transfer function
numerators of higher kinds give close approximations to the actual closed-
loop transfer functions (refer to Ref. 10, pp. 163-177, and Ref. 11,
pp. 63-70).
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Techniques using numerators of higher kinds (that is to say, multi-
variable system transmission zeros) are the core of a regulator synthe-
sis technique recently advanced by Harvey and Stein (Ref. 4). Their
technique is based upon a single parameter relaxation from a singular
regulator problem solution. The particular singular regulator solution
selected for the relaxation starting point is derived from the modal

properties desired for the finite modulus poles of the singular systen.
T. AdJustment of the Diagonal Ry Matrix

After all bandwidth requirements have been addressed, it may turn out
that the relative use of control points is inappropriate. For example,
the main rotor collective pitch control may be more active in terms of
zero crossings per second than the longitudinal cyeclic pitch control in
level cruising flight. (Main rotor collective should be a trim control
in this situation.) Inappropriate control use (required authority,
required rate or activity too high) is rectified by increasing the cost
function weighting coefficients in Rr for those controls. In order that
bandwidth requirements continue to be satisfled, it is necessary to
increase by the same factor all those elements in Qr which have a ratio
relationship to each element of Ry being increased. (This ratio rela-
tionship arises from successive applications of gqg = min [(2”‘(1)g)n+1 r/K].)
Adjustments made in this manner assure simultaneous satisfaction of band-

width and control use requirements.
8. Regulator Synthesis Examples

This subsection illustrates application of the ten regulator design
steps in Table 28. Application is to longitudinal dynamics of the UH-1H
for the hover flight condition. Regulator design function and bandwidth

requirements are listed in Table 29.

Step 1. The control weighting cost function coefficient arbitrarily
selected to be unity is that weighting longitudinal cyclic pitch rate,
DBD. ’

Rp(1) = 1.0



TABIE 29

UH-1H LONGITUDINAL FLIGHT SYSTEM FUNCTION
AND BANDWIDTH REQUIREMENTS

Flight Condition:

Hover

Functions:
Rate-of-climb command

Groundspeed hold

Bandwidths: (Rad/Sec)
Cyclic (DB) 25.7
Collective (DC) 25.7
Piteh (TH) 2.0
Rate-of-climb error (HDE) 1.0
Integral of HDE (HDI) 0.82
Groundspeed error (XD) 0.5
Integral of XD (XDI) 0.1

Our expressed desire is to have maximum collective pitch rate, DCD, be
significantly less than maximum longitudinal cyclic pitch rate to satisfy
flying qualities requirements. A ratio of ~/Ta to 1 is selected on the
basis of flying qualities engineering judgment. Consequently, the cost

function coefficient weighting collective pitch rate is:

)
Rp(2) = \— = 10.

1

Step 2. The key variable bandwidth requirements are already in

order of decreasing bandwidth in Table 29.
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Step 3., Refer to Table 29. The highest bandwidth requirement not
yet addressed is for the longitudinal cyclic pitch actuator output, DB.
(The bandwidth requirement for the collective pitch actuator output, DC,
is equal to that for DB. When this occurs it is immaterial which require-
ment is addressed first. 1Indeed, since the UH-1H has no unstable roots,
and the two actuators are completely independent, both requirements can

be addressed simultaneously.)

Step 4. Compute transfer functions. The output variable subject to
the bandwidth requirement of 25.7 rad/sec is DB. The input variables
which may serve as controls are DBD and DCD. (There_is no possibility
for surrogate controls because no prior bandwidth requirements have been
satisfied. Consequently, there are no prior loop closures to incorporate.)

The candidate transfer functions are:

DED s DCD

That this is so is readily determined from inspection of the plant equa-
tions (Table 10). Similar considerations lead to transfer functions for

collective pitch, DC.

D2 1 D _ g ne
DCD E DCD DB

= 0

The third transfer function for collective pitch arises from the poss-
bility that DC, which "satisfies a prior bandwidth requirement,' may be
considered a surrogate control for DB. The uncoupled nature of the two
actuators and stability of the open-loop plant result in DB having no
effect upon DC even when the loops satisfying the bandwidth requirement

for DB are closed.

Step 5. Approximate the transfer functions. No approximation is
required in this case since the transfer functions are already in the

form K/s™* 1. The values for K and n are:
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Transfer Function K. n

5p/5p (DB/DBD) 1.0 0

8c/5c (DC/DCD) 1.0 0

The zero valued transfer functions need not be considered.

Step 6. Calculation of (2na%)n+1r/K2. For the DB requirement the

value is:

[20(25.7)2]133(1)/(1.0)2 = 662.
For the DC requirement the value is:
[20(25.7)2]1RR(2)/(1.0)2 = 6620.

Step 7. Selection of the cost function coefficient. There is only

o n+1 o) . 3
we)  r/K- for the DB bandwidth requirement. It

is therefore the smallest value and is set equal to the corresponding

one finite value of (20
cost function weighting for DB, Qp(%4).
(k) = 662.

The situation for the DC bandwidth requirement is similar. The cost

function weighting for DC is Qg(5).

Qr(5) = 6620.

Step 8. Compute the regulator solution with the additional cost
weighting. The computed regulator gain matrix, Kg, for Qr(4) = 662. and
Qr(5) = 6620. is a 2 X 12 matrix of zeros except for two elements:

25.7 rad/sec

Kg(1,4)

kr(2,5) 25.7 rad/sec
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Step 9. Repeat the design process until all bandwidth requirements
are addressed. All requirements are not addressed; therefore return to
Step 3.

Step 3. Refer to Table 29. The highest bandwidth requirement not
yet addressed is for pitch attitude, Wepy = 2.0 rad/sec.

Step 4. Compute transfer functions. The output variable subject to
the bandwidth requirement is pitch attitude, TH. The candidate controls
and surrogate controls are DBD, DCD, DB and DC. We will restrict our
attention to the surrogate controls DB and DC for the purpose of illus-
tration. These transfer functions may be obtained from the appropriate
ratios of numerators for the open-loop controlled element transfer func-
tions in Table 30. (A flight controls engineer would ordinarily reject
collective pitch, DC, as a candidate for controlling pitch attitude. We
shall continue to include it here in order to show that the design pro-
cess automatically rejects use of collective pitch for pitch attitude
control.,) These transfer functions and the corresponding Bode plots are
given in Figs. 1hka and 14b. (The two actuator loops satisfying the prior
bandwidth requirements are closed, but this does not happen to affect

the transfer functions in this particular case.)

Step 5. Approximate the transfer functions. Two methods for
approximating transfer functions are illustrated in Fig. 16a for the
TH/DB transfer function. The solid amplitude ratio curve in Fig. 16a
is |G(jm)|dB and the dashed curve is composed of the asymptotes for
IG(jw)ldB. In the vicinity of the pitch attitude bandwidth requirement,
Wegy = 2.0 rad/sec, the asymptote is given by -0.169/s°. (This can also
be computed readily from the factored transfer function itself. It is
accomplished by making low-frequency approximations to the factors with
root modulus greater than 2.0 rad/sec, and high-freguency approximations
to the factors with root modulus less than 2.0 rad/sec. Multiplying

out the result gives an answer directly in the form K/sP*1).

Approximation of the actual amplitude ratio curve requires the Bode
plot of Fig. 16a to expedite approximation. A tangent to the curve is
drawn at o = Qeqy = 20 rad/sec. ]K[dB is determined by the intersection
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TABLE 30.

CASE:

DENOMINATOR:

1.003¢
( .28080
( .38494
(( .18339
(( .26279

) ( .08080

)
s -18934
¢ «92717

< .11883E-021>

NUMERATOR ¢ TH/DBD
-.16918
( .02088 ) ( .28@88
( .33322 ) ( .39184
< .17445E-23>
NUMERATOR: TH/DCD
-.3308PE-082
( .20003 Y ( .2988¢
{ .333¢p ) (-11.27@
< .13442E-83>
NUMERATOR: HDE/DBD
.24729
( .20233 } ( .20299
(-1.4789
(( .35965 , 1.3542
<-,22334 >
NUMERATOR: HDE/DCD
-9.7988
( .82000 y ( .o80082
(( .18545 , .14356
(( .25768 , +93216
<-.17544 >
NUMERATOR: HDI/DCD
-9,798¢
( .2202p ) ( .23000
(( .18545 s .14356
(( .2576@ , +93210
<~.17544 >
NUMERATOR: XD/DBD
1.8686
( 02069 Y ( .008069
( .38296 )
(( .19712E-21, 2.2663
< .69473 >
NUMERATOR: XDI/DBD
1.0606
( .30220 ) ( .80838

(( .19712E-91, 2.2663

< .69473

>

.

) ( .000899

+.19576E-21,
+24365 .

) ( .20883
)

) ( .oeped

)y ( .@808829
.48735 .

)y ( .00800
.26623E~91,
.24011 f

)
.26623E-81,
.24011 .

)y ( .@d800

«44674E-01,

) ( .33300
. 44674E-01,

10k

OPEN~LOOP CONTROLIED EIEMENT TRANSFER FUNCTIONS

UH1H HOVER 122LONG 31-JAN-79 CONTROLLED ELEMENT TF'S

) ( .¢ee8d )
.18833 )
.89459 1)
) (-.79965E-232)
) ( .13B54E-21)
) ( .333¢8 )
1.2636 1)
)
14107 ))
99864 ))

.14187 ))
92264 ))

) ( .3338¢ )
2.2659 ))

) ( .38296 )
2.2659 ))
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/s n n+1 THA 2
APPROXIMATION (2" G )™ app/(KGE)
Asymptotic 1,484,183
K=-0.169, n= 1.0
G(3w) 2,851,632
K=-0.316, n = 1.5

—.1691(s —.0079) (s + .333) (s + .39184)

) (s+.38494)[ 52 +2(.16339)(.18934)s + (.18934)2]

0i
20

Amplitude (dB)

-100

Phase (deg)

-200

=-300

Figure 16a.

x [82+2(.26279)(.92717)s + (.92717)2]

/
10 w {red/sec) 10 100

Transfer Functions for Selecting Qg(3) Value for
Pitch Attitude Control Bandwidth Requirement
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Amplitude (dB)

Phase (deg)

K/sn+1 '(enagTH)n+1QbC/(Kgg)2

APPROXIMATION
Asymptotic 19, 60k, 168, 000
K = 0.0372, n = 2.0
9 _ —.0033(s + .010854) (s + .333) (s + 11.27)

5 (s+.38404)[s2 +2(.16339) (. 18934)s + (. 18934)2]
x [s +2(.26279)(.92717)s + (.92717)2]

200! 10 (wlrdsseel _ 100

-100-

-200

_300 - e e e . . FErpp—

Figure 16b. Transfer Functions for Selecting Qr(3) Value for
Piteh Attitude Control Bandwidth Requirement
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of the tangent with ®w = 1.0 rad/sec, and —(n+ 1) is the slope of the tan-
gent in 20's of dB's per decade.

Either method of approximation may be used, but one method should be
used exclusively throughout. We shall continue using the asymptotic
approximation which, for the TH/DC transfer function, is 0.057'2/53 as

shown in Fig. 16b. The asymptotic approximations are summarized below.

Transfer Function K _n_
o/6p (TH/DB) —0.169 1
8/8. (TH/DC) 0.0372 2

Step 6. Calculation of (2%«R)™"!r/k2.

For the DB control:

(enaéTH)n+1QR(u)/(K§§)2 r21 (2.)21% 662. /(~0.169)2

1,48k, 183.
For the DC control;

(2P B ™ ag(5)/(KEH? = 22 (2.)2]7 6620. /(0.0372)?

I

19, 604, 468, 000.

Step 7. Selection of the cost function coefficient. The smallest
value of (2nu%)n+1r/K2 is set egual to the cost function weighting for
pitch attitude, Qg(3).

Qr(3) = 1,484,183.

From here, all steps are very similar up to the point where all band-

width requirements have been addressed. The regulator solution that
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results is for the "completed" design. Table 31 summarizes this regula-
tor solution. The cost function weightings, closed-loop eigenvalues and

regulator gain matrix are given in this table.

We are now in a position to consider how Ry might be modified in
Step 10. This requires knowledge of the relationships among the control
and output variables that were operative in determining the cost function
coefficients. These relationships are summarized in Table 32. This
table has the following interpretation. Consider either of the last two
columns, DBD or DCD. The bottom-most QR entry indicates the outer-loop
variable which is the ultimate object of control. (The variable name is
read in the left-most colummn.) The Qg entry immediately above indicates
the control (or surrogate control) variable for the column entry below.
This interpretation applies on up the column to each Qn or RR entry in
turn. It also applies (individually) for each column. Thus, [xdt has
as a surrogate control x which, in turn, has the surrogate control o.
Similarly, [hedt is preceded in the control chain by he, which is con-

trolled by &p, which is effected finally by §c, the "actual" control.

The "Control Variable Association' differentiation directly reflects
the origin of the smaller Qp cost weighting at each bandwidth step. Thus,
QR(B), which is the weighting for pitch attitude, 8, derived from the
1.48 x 10° found for DB as opposed to the 1.96 X 10'° for DC.

If every entry in any one column is multiplied by a common factor,
the design bandwidths will tend to be unchanged. (Exceptions will occur
only if the multiplying factor is such that one or more Qp's would change
columns if the formal procedures of Steps 3 through 9 were followed.)

Because the longitudinal speed and pitch degrees of freedom are
nearly uncoupled from the vertical speed degree of freedom, 1t is not
terribly interesting to illustrate the impact of multiplying every entry
in one column by a constant factor for a hover flight condition and vice
versa (but to a lesser extent). On the other hand, the 100 kt cruise
condition is interesting because longitudinal speed, pitch and vertical
speed couplings are strong. The relationships among control and output
variables and cost function coefficients for this 100 kt flight condi-

tion are summarized in Table 33. The cost function coefficients related
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Q MATRIX DIAGONAL, REGULATOR CLOSED LOOP EIGENVALUES, REGULATOR
1 1

! [ B! 1 !
t B.020 1 HD ! 25.7 t 1
! ! 1 184, 1 X8l
! ! 2 ] !
! 8.9009 tQ 1 !
! ! 't 25,7 r2
! ! 3 ! 189, 1 X92
! B.148E+87! TH ' '
! ! ! !
! 14 v 2,77 T3 TABIE 31
1 662, ! DB t -132, 1 X@3
' 1 1 !
! 15 ! 1 REGULATOR SYNTHESIS SUMMARY,
! §.662E+84! DC 12,77 1 4
! ! v 132, 1 x26 UH-1H, HOVER
! 16 ! !
1 69.2 t HDE 1 '
! ! 1 9.987 15
! t 7 1 -157. t Xe7
1 46.6 ! HDI 1 1
! ! ! !
! t 8 1 2.997 1 6
1 357. 1 XD 't 157, ! X@8
! 1 1 !
1 4 9 1 1
1 3.57 1 XDI 1 2.595 v 7
! ! t 188, 1 X#9
H 119 ! !
) 1 9.829 ! AOA I 1
Vel ' ! ! 3,192 t 8
! 111 1 184, 1 X19
' 8.980 ! ASE 1 '
! L ! 1
- - 1 8.336 19
1184, 1 X11
! '
R MATRIX DIAGONAL, REGULATOR ! 1
1 ! 8.117E-82! 19
t 188, 1 K12
- - ! !
! t 1 ! !
- 1.02 ! DBD 1 B.269E-82! 11
! ! t 188, 1 X13
! 12 t !
t le.0 t DCD 1 !
] 1 12,199 112
- - ! 189, 1 X14
! !
REGULATOR GAIN MATRIX
1 2 3 4 5 6 7 8 9 19 11 12
X2l X082 X063 X236 X87 X028 X089 X183 X11 X12 X13 X14
1 .1
8.254 8,523 8,717 22.8 1.98 -537. -8.152E+24  29.9 -2.518E-81 @.252 28.9 1.89 ! DBD

!
! 2
~9.264 ~1.07 -4.16 6.819 -3.37 -0.846 -8.936 -0.517E-82 27.9 -2.16 ~3.122 9.221E-£1! DCD
!

- ot bm g b



TABIE 32

RETATTONSHIPS AMONG CONTROL AND OUTPUT VARIABIES

AND COST FUNCTION COEFFICIENTS — HOVER

Bandwidth Control Variable Association
Output Requirement
Variable (rad/sec) DBD DCD
Rg(1) = 1.00 Rg(2) = 10.0
5 (DB) 25.7 Qp(k) = 662.
8e (DC) 25.7 Qg(5) = 6620.
6 (TH) 2.0 Qr(3) = 1.48x 10°
he (HDE) 1.0 Qr(6) = 69.0
[ he dt (uDI) 0.82 ap(7) = 46.6
% (xD) 0.50 ar(8) = 357.
[xadt (XDI) 0.10 Qr(9) = 3.57
TABIE 33

RELATTONSHTPS AMONG CONTROL AND OUTPUT VARIABLES

AND COST FUNCTION COEFFICIENTS — 100 KT

Bandwidth Control Variable Association
Output Requirement
Variable (rad/sec) DBD DCD
Re(1) = 1.00 Rr(2) = 1.00f
&g (DB) 25.7 Qp(l) = 662.
8. (DC) 25.7 R(5) = 662. ¢
6 (TH) 1.5 Qr(3) = 3.55% 107
he (HIE) 0.70 R(8) = 5.95¢
[ he dt 0.3 Qr(6) = L.77¢
£ = 1.00, 10.0, 100.
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to height control (the right-most column of Table 33) are multiplied by
f=1.00, 10.0 and 100.

Summaries of the resulting regulator designs are given for Tables 34,
35, and 36 for £ = 1.00, 10.0 and 100., respectively. These summaries
include the cost function coefficients, closed-loop regulator eigen-
values, regulator gain matrix, and rms responses for states, outputs and
controls.. The gains based on control deflections for the three values

of £ are sumarized as:

2757+1 —.012 -.013 —-.069 .ooa ~.05% 9.63
_ S_+1 log = .005 |ug + |- 108|wg + |--315 he + |.009|u + |-.206|w + [9.86]q
315 =1 .022 —.209 —.923 .026 —.727 7.49 (u7)
_ - -
28.3 .018 —.031 —-.T18 , f£=1.
+ | 62.6]8 + §.093[6s + [-. 181 hedt + |-.B67 fupggdt , =10
L61.h .33k —. 666 —-.965 , f=100.

2748._8+ 1 ~.008 .053 .1%2 —.001 .079 ~. 664
27"5_—5” 8c = |—-00kjug + |.026)wy + [.082]hc + [—.001{u + |.o57fe + | .01 |a
568_—1+1 —.001 .006 .03k ~.001 .028 .139 (48)

-17.9 .019 .075 .163 , f£=1.
4 |-12.2 e + |.01 |og + |.058 | heat + |.0b9|fwpg at , £ = 10

— 5.4k - 00k .026 -01 ’

[
]

100.
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TABIE 34. REGULATOR SYNTHESIS SUMMARY (f = 1.0)

Q MATRIX DIAGONAL, REGULATOR CLOSED LOOP EIGENVALUES, REGULATOR RMS, TOTAL RMS, OUTPUT+CONTROLS
1 1 1
! 13 1 1 1 ' ! 1 1 t 1
! 0.000 ! HD 1 25.7 1 1 1 2.06 1 X8l 1 1.01 ! HD
1 ' 1 180. ! X0l t ! ! 1
! 12 ! 1 ' t 2 1 12
1 0.000 10 ! ! t 1.7 1 Xv2 ! 9.238E-021 @
1 ' 1 25.7 12 1 ' ! !
1 vt 3 ! 186, 1 Xx02 ' 13 ! 13
! 0.355E+86! TH ! ! 1t 1,00 t X03 { 8.373E-621 TH
1 ! 1 i ! 1 ' 1
! to4 1 2.20 13 ! I 1 '
! 662, ! oB I -124. 1 xe3 1 1.39 I xe6 ! 0.491E-81! DB
1 ! 1 Il 1 1 1 1
! t s ' ! ' . v 5 ! t 5
1 652, t DC 2,20 14 1 8,960 1 X07 vo0,122 ! DpC
! ! ! 124, 1 X86 ! ! - '
! 16 ' ! ! to6 1 16
1 4,77 ! HDI I 1 ! 0.238E-821 XO0B 17 0.385 !t HDI
! ! t1.55 1 5 ! ! ! t
1 r7 Y184, 1 X7 1 t 7 ) r7
1 9.000 ! AZP 1 ' | 8.373E-021 X@9 1 8.519 I AZP
1 ! ! ! ! ! ! !
' 18 1 0.792 1 6 ! 1 8 ! 18
1 5.95 ! HDE 1 189, 1 x08 ! 8.491E-91! X12 t 0.263 1 HDE
t ! ! ! ! ! 1 1
! 19 ! ! ! 19 ! t o9
1 0,000 t XD 1 a.309 1 7 t0.122 1 X1l 1 1.40 1 XD
! ! ' 183, 1 xe9 ! t ! !
1 [T ! ! ! vole ! t 10
' 9.002 ! AOA ! ! 1 9.385 ' Xx12 { 9.886E-021 AOA
1 ! 1 08.431E-81} 8 ! ! 1 !
- - t 183, 1 X1@ ! 11 ! r 11
' ! | 0.116E-011 X13 | 9.129 ! DBD
! ! ! ! ! ]
t 0.116 19 ! 12 ! 1 12
1 1sa. ! x11 1 1.19 { E66 t 8.331 1 DCO
! ! ! ! ! 1
1 Il 1 13 - -
1 @8.269 1 1@ ! 7.25 1 EOL
R MATRIX DIAGOWAL, REGULATOR ! 189, 1 X12 1 1 14
1 1 !
: : 1 1.78 { E62
- - ! e.100 o1l t !
! ! 1 ! 189, 1 X13 - -
t  1.00 ! DBD \ '
! ! - -
1 - H 2
1 1.00 I oCcD
1 1
REGULATOR GAIN MATRIX
1 2 3 ] s 5 7 8 9 1@ 11
x01 x02 %903 X066 x07 x08 X689 X10 X11 X12 X13
1 (R
1 8.325 8.359 1.92 -8.211 1.47 -267, -784. 27.7 -0.501 6.853 19.9 1 DBD
1 '
t ro2
I 0.218 -1.41 -3.55 8.296E-81 -2.11 17.8 478, -#.501 26.8 -2.01 -4.36 t Dco
! 1



¢LL

Q MATRIX DIAGONAL,
1

!
0.900 !
1

1

¢.000 !
1

1
9.355E+06!
!

1

662. !
!

!
8.662E+041

1

47.7 !
1

!

¢.e090

59.5
2.000

0.080

R MATRIX DIAGONAL,
1

5
bc

6

HDI

7

AzZP

8

HDE

9
XD

10

AOA

DBD

bCcoD

REGULATOR GAIN MATRIX
1 2

!
-0.138

a.115

o em it tm et e e o e e vm v am e e e b i e b= b m b b b= bm b e bm = = b b e b e e o

REGUTATOR SYNTHESIS SUMMARY (f = 10.0)

EIGENVALUES,

TABIE 35.
CLOSED LOOP
1
1
25.7 [
180. 1 X0l
1
!
25.7 ro2
180. ! x@2
1
!
2.52 13
180. 1 %03
1
!
2.21 o4
-117. 1 X05
]
1
2.21 1S
117, t xa7
1
1
0.875 16
180. 1 x08
!
:
8.326 r7
189. 1 X09
i
|
p.4256-21! 8
180. 1 X19
.
'
0.116 to9
18a. 1 x11
\
!
0.269 118
184, 1 X12
!
:
8.100 111
180, 1 x13
!
4
X06
-0.246
#.258E-01

!
X089

X01

2
X02

3
X03
4
X06
5
X087
6

xo8
!

7
8
Xleg

9
X1l

10
X12

11
X13

12
EB6

13
EDl

14
EA2

RUS, OUTPUT+CONTROLS
1
11
1.02 1 HD
1
12
8.756€-821 Q
1
13
8.899E-02! TH
1
14
9,161 1 DB
1
1 s
#.455E-811 DC
!
1 6
0.254 ! HDI
1
17
9.575 1 AZP
!
18
0.253 ! HDE
!
v o9
3.1 1 %D
!
110
0.6GIE~021 AOA
1
111
8.757 1 D8D
1
112
0.181 1 DCD
1
[
! DBD
1
12
1 oco
!
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TABIE 36. REGULATOR SYNTHESIS SUMMARY (f = 100.)

Q MATRIX DIAGONAL, REGULATOR CLOSED LOOP EIGENVALUES, REGULATOR RMS, TOTAL RMS, OUTPUT+COWTROLS
1 1 1 1
! ! 1 ! ! ! ! 1 ! 1 1
! 0.000 { up ! 25.2 1 1 ! 2,06 1 X901 1 1.81 i HD
1 1 ! 189, 1 xal ! ! ! !
] ] 2 1 ! ! ! 2 1 ! 2
!t 0.000 ! Q ! ! 1 1.71 ! X02 ! 9.141E-011} Q
t ! 1 25.7 ! 2 ! 1 ! !
1 13 v 180. 1 X02 ! 13 1 13
I (.355E8+406! TH 1 1 : 1.00 1 X83 ! 0,119E-8811 TH
! ! ! i 1 ! !
1 1 4 ! 5.71 ! 3 13 i 4 1 ! 4
H 562, t DB ! 180. 1 X3 1 3.83 ! Xes 1 9.208 1 DB
! ! l 1 ! 1 ! 1
! ! 5 1 t ! ! 5 ! 1 5
! 0.6G62E+95! DC H 2.46 1 4 ! 1.86 ! X087 ! 0.948E-A2! DC
! ' I -1p5, ! X85 1 1 ' 1
| ! 6 ! 1 1 1 6 1 ! 6
1 477, ! HDI 1 ! ! 0.141E-81! Xx08 100112 ! HDI
1 ! ! 2.46 ! S H 1 ! 1
! 1 7 ! 10s. 1 X07 1 ! 7 ! 1 7
! 6.006 ! AZP 1 1 ! 0.119E-811 X09 1 0.875 ! AzZp
1 l§ 1 ! ! H I 1
! I 8 1 0.893 ! 6 1 ! 8 ! | 8
! 595. ! HDE ! 188, ' Xo8 1 ©.208 ! Xl@e ! 8.175 ! HDE
! 1 ! ! 1 ! H !
1 t 9 ! ! ! 1.9 ! 19
I 9.o00 ! XD ! @9.423e-01! 7 ! 0.94BE-021 X11 ! 3.84 1 XD
1 ! ! 180. 1 Xf9 ! ! ! !
! 't 10 1 ! ! 1 1@ 1 1 16
!t 9.009 1 ACA ! ! !oe.112 1 X112 ! 0.765E~82! AOA
1 1 t 6,332 t 8 ' | 1 '
- - ' 188, t X108 ! 1n ! 11l
! 1 ! 0.435E-311 X13 ! 2.01 { DBD
1 ! ! 1 ! !
t B.116 t 9 ! 112 1 112
! 180, 1 X1l 1 3.82 ! ED6 !t 0.599E-21! DCD
1 1 ! 1 ! !
! 1 1 - -
1 0.269 118 Lo7.23 : Eéf
R MATRIX DIAGONAL, REGULATOR ] 180, t X12 ! 1
1 : : 1 14
]
- - 1 n.100 11l ! 1o l’ N
1 ' 1 ! 100, 1 X13 -
t 1.00 ! DBD ! '
1 ! - =
! to2
1 1lo0a, 1 Deo
! t
REGULATOR GAIN MATRIX
1 2 4 5 5 7 2] 9 1¢ 11
Xel Xn2 X983 Xee6 Xa7 x08 x09 X1la K11 X12 X13
! 1 1
! -0,688 6.49 28.7 -0.823 22,6 -233. -0N.502E+34 31.1 -10.4 20.7 39.0 1 DBD
1 !
1 ! 2
! 0,267E-A1 -0.165 -0.877 9.243E-01 -0.729 -3.64 142, -0.104 25.1 ~-0.684 -0.261 ! DCD
1 1



Recall that the equation relating the controls to the states for the regu-
lator is u = —Cx. In Egs. 47 and 48 we have moved the state variables dp
and 8¢ to the left-hand side of the equations for &g and p, respectively.
This is because the state variables &g and d¢ always remain integrals of

the control variables éB and éC'

The gains across the three values for £, for several variables in each
equation, are plotted vs. f in Fig. 17. The most noticeable effect, and
one which is wholly expected, is that the gains in the by equation (BEq. 47)
increase and the gains in the 5y equation (Eq. 48) decrease as f increases.
This is so because increasing f effectively increases the penalty on use of
B¢ as a control point. Thus, the regulator is forced to rely more heavily

on the longitudinal cyclic control point,

Figure 17 also illustrates, for the variables plotted, that a sort of
power law might be appropriate for the effect of increasing the dc cost
function weighting on the regulator gains. To the extent that such a
relationship exists, it might be exploited in further refining the method

for computing desired cost function weightings.

The highest frequency eigenvalues representing the inner-loop band-
widths associated with the actuators are changed only slightly as f is
varied. This is to be expected since a relative change in emphasis
between collective and cyclic controls should not affect the highest fre-
quency modes. Similarly, the three lowest frequency eigenvalues, 0.100,
0.116, and 0.269, related to the shaping filters ug, wg, and he, respec-
tively, do not vary with f at all. This too is to be expected, because
the shaping filter modes are not controllable. They are used only to

shape the white process noise.

A comparative summary of rms response and control activity is given
in Table 37. Just as with the gain shifts of Egs. 47 and 48, this per-
formance summary shows a very marked shift from use of collective pitch
to control altitude to use of longitudinal cyclic pitch and pitch rate
to control altitude as f is increased. (Consider the rms values for DCD
and DC vis a vis the rms values for DBD, DB and @ for the three values
of f.) Yet outer-loop performance is not changed that significantly.

(Consider the rms values for HDE and TH.) As f is increased, one real
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TABIE 37

COMPARATIVE PERFORMANCE SUMMARY

(For Closed-Loop System Including
Filter Observer)

Multiplying Factor, f

Variable 1.00 10.0 100.
h (HD) 1.01 1.02 1.01
a (Q) 0.238E-02 0. T56E-02 0.141E-01
o (TH) 0.3T3E-02 0.899E-02 0.119E~-01
sg (DB) 0.491E-01 0.101 0.208
8¢ (DC) 0.122 0.455E-01 0.948E-02
HDI ([ he dt) 0.385 0.254 0.112
ag (AZP) 0.519 0.575 0.875
he (HDE) 0.263 0.253 0.175
x (XD) 1.40 3.11 3.84
a (AOA) 0.886E-02 0. 669F.-02 0. T66E-02
55 (DED) 0.129 0.757 2.01
5o (DCD) 0.331 0.181 0.599E-01
gﬁtggrl}ggl 0.418 1.19 1.54
gg tii’,fff,il 0.432 0.633 1.01

& x control activity = qi/(Zﬁcx). This is the expected
nunber of positive-going zero crossings per unit time.
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root increases in modulus by a factor of 3.7 and the closed-loop short-
period damping ratio decreases from 0;56 to 0.28. This shift in relative
use of controls is accompanied by an increase in control activity for
both controls. As seen from the bottom of Table 37, there is an almost
fourfold increase in positive-going zero crossing rate for the 8p control,
as f is increased by two orders of magnitude. Notice also that this par-
ticular control activity measure also illustrates the dramatic shift in
the control burden from 3¢ to 3y as the penalty on 8¢ is increased in

the cost function.

Figure 18 shows the rms response of several variables and the two
control activities plotted as functions of the three values of f. First,
notice that the slope of the line depends on the control point associated
with the particular variable; the B variables show a negative slope,
while the g variables have positive slope. This same feature was ob-

served in Fig. 17. We might also infer, as before, that some power law

1004

f Control
Activity

10 10.0

Figure 18. Selected Values of RMS Responses vs. f
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exists which approximately defines the effect of increasing the d¢ con-
trol point weighting upon the various rms response levels. Since such a
relationghip does not hold for variables not plotted in Fig. 18, We can-

not draw any conclusions here.

Flying qualities dictate that collective pitch be used as a trim
control in cruising flight. Hence, the rms values of DC and DCD should
be small. £ = 10. seems to produce reasonably small rms values for DC

and DCD, while the DC control activity is only modestly increased.

Another example case is summarized below for the 100 kt cruise flight
condition. This example differs from the previous one in that airspeed

control replaces pitch attitude control as one of the ultimate outer-loop

2w M. Y 2
L

goals. Relationships among the control and output variables and cost
ab le 39 is a summar

1a ZRQ Mat
A 130

CIPeE PN a owma almvman eead
LU LCTIILD 4l © oulllllicl L4aClu oy

of the resulting regulator design.

TABLIE 38

RELATTIONSHIPS AMONG CONTROL AND OUTPUT VARTABIES
AND COST FUNCTION COEFFICIENTS

Bandwidth Control Variable Association
Output Requirement
Variable (rad/sec) DRED DCD
Rg(1) = 1.00 Rg(2) = 10.0
&g (DB) 25.7 Qp(l) = 662.
5 (pC) 25.7 Qr(5) = 6620.
o (TH) 1.5 Qr(3) = 354, Th2.
he (HDE) 0.70 (See note) (see note)
[ he dt (HDI) 0.3 Qr(6) = 2.8k
UASe (ASE) 0.10 Qr(9) = 3.4k
Jupge dt (ASI) 0.02 Qr(8) = 1.37% 102

Note: Bandwidth requirement is satisfied without additional feed-
back. This is indicated by HDE/DC = 7.3 (n = —1), and
HDE/TH = 169. (n = —1).
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TABLE 39.

Q MATRIX DIAGONAL, REGULATOR
1

1 1

9.082 ! HD
!

! 2

Q.29 ! Q
!

! 3

9.355E+96] TH
!

! 4

662, ! DB
1

! S

#.662E+84! DC

»

2.84 ! HDI
!

! 7

2,099 1 HDE
1

! 8

2,137E-02! ASI
!

! 9

3.44 ! ASE
1
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2.0008 1 XD
!

t 11

3.02d9 1 AOA
!

REGULATOR GAIN MATRIX
1 2

3 4

Xa1 Xg92 Xd3 X6
-3.217 1.18 2.99 9.682
-2,852E-82 -8.496 -8.981 9.335

REGULATOR SYNTHESIS SUMMARY, UH-1H,

R MATRIX DIAGONAL, REGULATOR
1

1 H
! l.e8 1 DBD
1 ¢
H ! 2
! 1.9 ! DCD
! !

5 6 7 8 9
xa7 Xo8 X9 X1@ X1l
1.82 =277, -895. 27.9 -9.627

-3.243 3.82 61.9 -2.627E-91 25.9

100 KT
CLOSED LOOP EIGENVALUES, REGULATOR
1
1 !
! 25.7 ! 1
! 182. ! X2l
! !
! !
! 25.7 ! 2
1 188, ! Xe2
! !
! !
! 2,29 1 3
1 -124. 1 Xe3
! !
! 1
! 2.29 ! 4
! 1214, 1 X86
H !
1 !
1 9.728 1 5
t =174, ! Xxe7
1 !
1 !
1 8.728 ! 6
1 174, 1 Xo8
1 1
1 1
1 9.135 1 7
H 189, 1 X89
1 1
1 1
!t 9.627E-921] 8
! 182, ! X1
! !
! !
! 2.156E-981! 9
! 188. X1l
1 !
! !
! 9.116 1 1@
! 182, ! X12
! !
! !
! 9.269 t 11
1 188, t X13
! !
! !
1 8.1@9 1 12
! 189, 1 X14
1 !
le 11 12
X12 X113 X14
1
1.34 23.9 d.225E-211 DB
1
1
-0.324 -8.934 2.939E-22! DC

1
D

2
D
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An interesting feature in this 100 kt cruise example is that band-
width requirements on HDE are met as the result of imposing prior band-
width requirements on TH, DB and DC. This is indicated by the fact that
the asymptotic approximations to the transfer functions (obtained in

Steps 4 and 5) for HDE/TH and for HDE/DC are pure gains. Thus,

HDE K = —169.
'EH— = —'169_.
n = -1
HDE K= 17.30
e - 7.30
n= -1
n = —1 indicates a pure gain transfer function approximation. When this

occurs, no cost function weighting (i.e., a value of zero) should be

used on the variable under consideration.

Generally, n < O indicates either that the bandwidth requirement is
met (n = —1), or that a prior bandwidth requirement has, in effect, used
the current variable under consideration as an inner-loop feedback

(n < =1).
D. CONTROLIER SOLUTION

Synthesis activities to this point have generated all the data
required for the controller solution. The data merely need to be com-

bined in the appropriate way.

The structure of the controller is shown in Fig. 14. Equations for
the coefficient matrices (Ap, Bp, Cp and Dp) are given on page 67. The
"controller solution" is simply an evaluation of these four coefficient
matrices. These matrices, together with the controller equations in
Fig. 14, enable a circuit designer or software specialist to implement

the controller.

Controller coefficient matrices for the longitudinal UH-1H are given

in Table 40 for the hover flight condition and in Table 41 for the

121



1
!
'
!
!
1
]
)
!

TABLE L40.
AF MATRIX
1 2
El3 EB]
-9.333 8.926E-29
-34.3 -3.922
~1.69 -3.76
BF MATRIX
1 2
HD Q
-3.146E~86 4.97
95.6 -29.1
592. -76.5
CF MATRIX
1 2
E13 EQl
-28.9 -3.254
v.122 2.264
DF MATRIX
1 2
HD Q
21.5 538.
-42.5% 1,38

CONTROLIER COEFFICIENT MATRICES, UH-1H, HOVER

3
E62

9.363E-98

-2.37

~-15.@

2.313E-36

788,

-0.123E+34

EQ2

-4.523

1.87

3
TH

2.149E+04

79.8

y = AF§ + Bpz

A
u = (}Fﬁr + 1)132
! 1
! E13
!
! 2
! EQ)
H
! 3
! E@2
!
4 s 6 7
DB DC HDE HDI
¥.142E-29 -9.922E-37 @.452E-15 é.9v89
-34.3 59,7 -3.295E-86 @503
-1.60 Isl. -8.183E-05  g.@a0

! 1

! DBD

!

! 2

1 DCD

!

4 5 6 7
DB ple} HDE HOI

-29.9 2.518E-a1 -98.717 -2.252
¥.517E-92 -27.2 4.16 2.16
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8
XD

-3.104E-48

-9.13

1.36

-26.6

-0.435

XDI

a.eae

V.09

.98

9
XDI

-1.89

-A.221E-91

E13

Edl

E92

DBOD

DCD



TABIE 41. CONTROLIER COEFFICIENT MATRICES, UH-1H, 100 KT

L]
N A
Yy = Apy + Bpz
A
u = Cpy + Dpz
AF MATRIX
1 2 3
El3 EQ) EB2
! 1
1 -0.333 -3.614E-08B 0.132E-26! E13
1 1
! 1 2
H 8.6 -8.183 1.52 t EOl
1 !
1 [} 3
1 -125. 1.17 -25.9 ! ESB2
H '
BF MATRIX
1 2 3 4 5 6 7 8 9
HD Q TH 2:3 DC HDI HDE ASI ASE
- - -
! ! 1
1 -3.314E-85  4.97 8.S30E-83 9.657E-86 ~3.171E~85 @.263E-12 -9.188E-12 -23,998E-11 ©.162E-961 E13
! !
t ! 2
{ =36.3 261. #.613E+94 8.06 -20.1 -2.145€-94 -9,157E-03 3.478E-¢3 1.87 ! E91
t !
! t 3
! 594. -J3.419E+24 -@,1@0E+26 ~125. 325. -2.422E-94 #.546E-94 0.147E-32 -39.6 ! Eé2
1 !
CF MATRIX
1 2 3
E13 E2 E@2
! ! 1
t -23.9 -8.558 -1.22 1 DBD
] '
1 ! 2
! 8.934 -2.313 9.479 1 DCD
! !
OF MATRIX
1 3 4 5 5 7 8 9
HD Q TH DB DC HDL HDE ASI ASE
!- ! 1
1 28,1 271. -d.434€E+34 -27.9 a.627 -1.34 -2.99 -d4,193E-¢1 -2.15 ! DBD
! ! !
' X 12
t -11.6 -2.14 @.206E+34 3.627E-81 -25.9 ?.324 2.981 -d4,.786E-92 2.281 { DCD
1 1

123




100 kt cruise flight condition. It must be appreciated that the con-
troller function is different in one respect for each flight condition
(groundspeed control in hover in distinction to airspeed control in

100 kt cruise). At each flight condition only one controller function
(flight control system mode) is addressed. Other controller functions
would be developed in similar form by simlilar methods. Different meas-
urements may be used for different controller functions as in the case of
the two example functions given (proportional-plus-integral groundspeed

error in distinction to proportional-plus-integral airspeed error).

Controller transfer functions are summarized in Table 42 for the
hover flight condition and in Table 43 for the 100 kt cruise flight con-
dition. The characteristic polynomial roots are the same as the closed-
loop filter-observer roots for these special cases (refer to Tables 17
and 22). This is for the reason that the [G; — KyoGp] matrix is null for

these cases as was explained earlier.

The numerators of these transfer functions are not particularly
remarkable in most respects. However, they are not exactly what a con-
ventional frequency response design approach would lead to either. This
is particularly so with respect to the non-minimum phase zeros at low
frequencies (e.g., the DCD/TH numerator in Table 42) and at mid frequen~
cies (e.g., the DBD/TH numerator in Table 43). The non-minimum phase
zeros at high frequencies do not really affect the design because of low

loop gain at those frequencies.

Another observation is that every measurement is fed back to every
control. This results in eighteen controller transfer functions. While
there are some controller transfer function paths for which the gain is
negligible at all frequencies (e.g., the DCD/XDI numerator in Table L2),
not many have this property. This is in contrast to the eight to ten
non-zero controller transfer functions an experienced conventional fre-
quency response designer would use. More will be said in the next chapter

concerning controller simplification.

The controller transfer functions are third order (not counting inte-

grals of errors). This order is certainly acceptable as a practical
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TABIE 42.

CONTROLLER TRANSFER FUNCIIONS, UH-1H, HOVER

CASE: UMIH HOVER I22LONG 2-FEB-79 CONTROLLER TRANSFER FUNCTIONS

DENOM INATOR:

1.09990
( 31597
< 1.6383

NUMERATOR:

21.541
( 11142
< .25317

NUMERATOR :

538.16

{ 15.694
((C .79748
< 593.67

NUMERATOR:

1485.9
( .24018
< 1991.3

NUMERATOR:

-29.879
( -.18186
<=27.917

NUYMERATOR:

.5178lE-9
{ .29977
<-21.332

MUMERATOR :

-. 715659
{ .31587
<-1.1741

NUMERATOR:

-.25178
( .31sa7
<-.41249

NUMERATOR :

-26.641
{ .27441
<-37.964

NUMERATOR:

-1.8892
( .31537
<-3.995¢

) .33390
>

DBD/ HD

} { .31682
>

Dsp/ Q

s +264429
>

DBD/ TH

) .33320

oBD/ DB

Yy o 2333932

DBD/ DC

1
) { .333q9
>

DRD/HDE

} {33390
>

DBD/HDI

} ( .33308
>

DBD/ XD

) ( .33309
>

DBD/XDI
) ( .33300
>

)

)

( 15.614

( .33322

19475 '

( 15.988

( 15.428

{-4127.1

{ 15.614 -

( 15.614

{ 15.595

(15.614

)

14734

}

)

)

)

)

)
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NUMERATOR: DCD/ HD
-42,586
{ .11589 )} ( .31529 )
<-.51672 >
NUMERATOR: DCD/ Q
1,3319
(-.28691E-31) ( 1.2724 }
< 2.5324 >
NUMERATOR: DCD/ TH
79.797
( .3332¢ ) {-.45581 )
<-39.1R5 >
NUMERATOR: DCD/ DB
.51744€E-32
(~.11656 ) { .33309 )
< .41471 >
PC=936a35
NUMERATOR: DCD/ DC
-27.988
(-.94888E-81) ( .33389 )
< .28321 >
NUMERATOR: DCD/HDE
4.1573
{ .31547 } ( .33349 )
< £.8123 >
NUMERATOR: DCD/HDI
2,1563
( 31587 ) { .33398 )
< 3.5326 >
NUMERATOR: DCD/ XD
-.43622
( .15839 ) ( .33399 )
<-.39283 >
NUMERATOR: DCD/XDI
-.220S9E-91
( .31597 ) ( .33308 )

<-.36139E-01>

( 33309

(-53.279

( 2.4995

(-2954.8

{ .33773

( 15.614

{ 15.614

(17.982

{ 15.614



TABIE 43.

CONTROLLER TRANSFER FUNCTIONS, UH-1H, 100 KT

CASE: UH1H 1S0KT 128LONG 2-FEB-79 CONTROLLER TRANSFER FUNCTIONS

DENOMINATOR:
1.9099
{ .11136 ) .33320
< .92977 >
NUMERATOR: DBD/ HD
28.8257

{-.8l7G1E-91) ( .12973
<-.99896E-31>

NUMERATOR:

273.94

psp/ Q

{ .S7922E-91) ( .19974

< 129.19

NUMERATOR:

-4344.4
( .11516
< 38B6.42

NUMERATOR:

~27.876
( 12362
<-22.684

NUMERATOR:

.62719
( .10160
<-12.549

NUMERATOR :

-2.9885
{ -11133
<-2.7778

NUMERATOR:

-1.3492
( «11135
<-1.2469

NUMERATOR:

-2.1499
( .11284
<-.66249

NUMERATOR :

-.19271E
( .12935
<-.22987

DBD/ TH

) ( .33382
>

bsD/ DB

) .33309
>

8D/ DC

) ( .333@0

CBD/HDE

) ( .3338¢0
>

PBD/HDI

) { .3334¢

DBD/ASE

y O .33338
>

DBD/ASI

-21
) ( .33329
E-91>

)

( 25.9074

{ .33392

{ 43.169

{~2.3193

( 19.767

(-589.14

( 25.¢74

{ 25.974

( 8.2235

( 25.162
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NUMERATOR: DCD/ HD
-11.598
{ 18443 ) .33399
< .19991 >
NUMERATCR: DCD/ Q
-2.1404
( .lc888 }  ( .4@8243
<-128.23 >
NUMERATOR: DCD/ TH
2859.9
( .12469 ) ( .33390
< 68.546 >
NUMERATOR: DCD/ DB
627492 -91 .
( .16364 Y .33320
<-3.39592 >
NUMERATOR: DCD/ DC
-25,87¢
{ .12784 ) ( .33302
<-17.484 >
NUMERATOR: DCD/HDE
. 98965
( .11149 } ( .333@9
< .91216 >
NUMERATOR: DCD/HDI
.32357
( 11137 ) ( .33322
< .32989 >
NUMERATOR: DCD/ASE
.28138
( .11284 ) ( 33320
<-.32735 >
NUMERATOR: DCD/ASI
~.78565E-32
( .13233 ) ( .33309

<-.86492Z-02>

(-.47364

( 998,36

{ .80143

(-967.21

( 18.819

( 25.974

( 25,9274

( 24.982



matter for flight control system implementation. It is estimated that
an experienced conventional frequency response designer would use two

first-order filters.

This completes explanation of the controller synthesis procedures
and examples. The next section explains and illustrates procedures for
examining more of the system and controller properties and for conduct-
ing the controller design assessment. These key activities are necessary
to better understand what the optimal synthesis hath wrought, as well as
to assure that other quantitative requirements and qualitative require-
ments, which we are not able to incorporate directly into the problem

formulation and solution procedure, are satisfied.
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SECTION V
DESIGN ASSESSMENT

At this stage of the design process a controller has been synthe-
sized that consists of a filter-observer and a regulator. This section
discusses the next step in the design process — examination and expan-
sion of the synthesis results into a composite, total picture of system
properties, behavior, and design margins. The goal here is to present
the techniques needed to evaluate a preliminary FCS design. By exercis-

ing these techniques, the analyst will be able to:
® Determine whether design goals have been met.
® Define quantitatively all the important properties of

the system, e.g.,

— expand the scope of the results (e.g., to include
transient characteristics).

— highlight the system's dominant properties.
— reveal the sensitivity of dominant properties
to uncertainties.
® Broaden the understanding of the optimal synthesis
design results, for example:

— relative importance of the various terms in
the control laws.

—  factors which contribute to particular con-
trol behavior (e.g., see Section IV discussion
of results when Gi — K12Go = 0).

— implications for future design strategy.

® Explore simplifications of the design which may lead
to a simpler, more practical, controller.

® Investigate the implications of controller architecture
on results.

® Generalize design for other applications.

A marriage of evaluation techniques from classical and optimal control

theory will provide the basis for the design analysis.
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Table UL presents a more specific outline of the system and controller
properties that are examined in this chapter. All of the assessment goals
listed above are addressed by one or more of the table entries, although
there is not always a direct correspondence between the two. The design
goal list addresses rather fundamental questions, whereas the table (and
the remainder of this section) presents a systematic checklist-like
method for answering these questions while simultaneously defining and

evaluating a given FCS design.

To this end, notice that the topics addressed are divided into two
major categories: properties of the system, and properties of the con-
troller. Within each category a definite hierarchy exists, so that the
evaluation proceeds from the simple and qualitative to the detailed and
quantitative. Along the way, certain features may be deemed unimportant
or uninteresting and are thus excluded from more thorough examination.
In this way, the need for microscopic analysis of each aspect of the
design is eliminated, and the numwber of assessment steps is correspond-

ingly decreased.

The remainder of this chapter is devoted to a close look at many of
the techniques for design evaluation listed in Table 44. We begin with
an exploration of the stability characteristics of the system; stability
is typically the most fundamental consideration in any feedback system.
Certain metrics from classical control theory such as gain and phase
margins are computed. These provide a quantitative rank-ordering of all
variables in terms of their tendency toward instability. Then, for each
variable, the mode which is the first to become unstable as the closed-

loop gain increases is identified as the crucial mode.

Next, the response characteristics of the system are assessed. This
task is divided into three areas: response of the primary variables,
response of the secondary variables, and response of the controls. Cer-
tain behavior is expected in a variable with satisfactory response: the
transient response to commands must be smooth and well-behaved; the
response to disturbances should be minimal; the control activity must

be within reasonable physical limits; and command following should be
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TABIE Lk.

DESIGN ASSESSMENT

FEATURE

PROPERTY

ASSESSMENT DATA/TECHNIQUES

CONSIDERATIONS

SYSTEM PROPERTIES

Stebility

Nominel modal dampings

Margins for key loops

Crucial mode(s)

Response
Primary controlled variables

Specified command-
response relationships
Disturbance/noise inputs

Secondary variables

Specified command-
response relationships

Control activity

Closed-loop characteristic egquations

Phase and gain margins for key open-
loop characteristics

First mode to go unstaeble as loop
gain(s) are varied

Rapid, well-damped, minimum-tailed
time histories for specified tran-
sient inputs

Good output/command following for
specified random inputs

Indifference/suppression of effects
of unwanted inputs

Degireble phasing and amplitude
relative to primary variable

Motion harmony, coupling of varisbles

Control rates, positions;
limiting potential, favorable or
negligible cross-coupling

Closed-loop eigenvalues

Open-loop frequency responses

s-plane/Bode root loci

Indicial, ramp-input responses
3-plane/Bode root loci

RMS response ratios (covariance
matrix)

Bandwidths (frequency responses)

RMS values {covarisnces)

Indicial responses to commands

s~plane root loci with closed-
loop modal response ratios

RMS velues
Indicial responses

RMS values, exceedances

Can be both high and low
gains in conditionally
stable situation

Defines time character
Defines dominant modes

Also relates to command-
response accuracy

Defines time character

Defines dominent modes
for secondary variables

Also defines reasonsble
authority limits

(concluded on following page)
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TABIE 44. (Concluded)
FEATURE PROPERTY ASSESSMENT DATA/TECHNIQUES CONSIDERATIONS
SYSTEM PROPERTIES (CONCLUDED) :
Sensitivity

Sensitivity of key response
modes
Crucial
Dominant primary
Tominant secondary

Sensitivity to perasitic
nonlinearities
Threshold Effects

Graceful Degradation
Conventional loop struc-
ture

Integrated sensor struc-
ture, adaptive filter-
observer

Sensitivity to off-nominal condi-

tions, component tolerances/

variations, uncertainties, ete.

Different thresholds in various

loops

No gross instability problems with

various loop failures

No gross instebility problems with

various loop failures

First-order gain or parameter
gsensitivities

Comparlson of pertinent open-loop
frequency responses

Use stability analysis techniques
on system where one or more loops
has failed

Use stability analysis techniques
on system where one or more sen-
sors has failed

Effects of zero gains on
various outer/inner loops

Will increese order of
filter-observer, and in-
creage rms state estima-
tion error

CONTROLLER PROPERTIES

Gain Levels
Control saturation

Minimun increment of control

Sensor Complex

Equalization economy

Commonality of elements/
gain settings for different
operational modes

Level of input state which saturates

control

Level of input state which corre-
sponds to minimum control output

Minimum structure controller

Common controller elements for each

operational mode

RMS values, controller gains

Controller gains

Structure, architecture

Controller gains over many opera-
tional modes

i Indicates outer extent of
' control space

Indicates inner extent of
control space; effective
threshold of variable fed
to control; dynamic range
information; permits elim-
ination of low gain, low
effectiveness feedbacks

Sensor/computational
tradeoff

Eliminate low gain, low
effectiveness feedbacks




good. TFor both the primary and secondary variables the modes that domi-

nate the response character are identified.

The final consideration within the system properties category is the
sensitivity of the design. Here, too, there are three areas of interest.
The first is the sensitivity of the key response modes (i.e., the cru-
cial and dominant modes) to off-nominal conditions, which is quantified
with the use of first-order gain and parameter sensitivities. The second
is the svstem sensitivity to parasitic nonlinearities such as different
thresholds for the various feedbacks. Here, open-loop frequency response
plots provide the data for assessment. Finally, the ability of the
design to degrade gracefully is evaluated, based on its stability and

response characteristics when loops are systematically opened.

Consideration of properties peculiar to the controller follows.
There are two major considerations: +the gain levels and the sensor com-
plex. Questions concerning control saturation and minimum increment of
control are addressed within the context of gain levels. Under the
heading of sensor complex fall many concerns which affect the controller
mechanization. These include: equalization economy, which refers to
the desire for minimum sensor/signal compensation/control channel fea-
tures in the system implementation; and commonality of elements, a desire
for the minimum number of gain and/or element changes over the range of
operating modes. Both economy of equalization and commonality of ele-

ments are evaluated via variation of system architecture.

Limited design assessments were undertaken during the course of the
filter-observer and the regulator synthesis. Those aspects will be only
briefly referred to at the appropriate points as the discussion winds
its way through Table 4k4. Certain other features which are enumerated
in the table are beyond the scope of this report; these too will be dis-
cussed only briefly, without benefit of examples. In all other cases,
however, the discussion of the evaluation techniques will be accompanied
by examples from the UH-1H hover FCS design, presented in full in Appen-
dix C.
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A. BSTABILIIY

As stated previously, an understanding.of the stability characteris-
tics of a system is probably the most fundamental of all design assess-
ment aspects. Interest lies not only in determining whether or not a
given system is stable, but also in what causes the system to be stable
and what modes of the system are most likely to become unstable when dif-
ferences appear between the actual and analytical systems. Such infor-
mation is needed to define management safety and to evaluate the per-

formance of a design in off-nominal conditions.

The most obvious place to begin the stability assessment is with the
closed-loop system denominator. All closed-loop roots should lie in the
left-half complex plane and indeed this is guaranteed for an LQG optimal
controller if the open-loop plant is detectable and stabilizable and if
a positive definite performance index was used in controller synthesis.
In fact, these conditions assure uniform asymptotic stability (i.e.,
%(t) = 0 as t - o, see Ref. 24). One measure of the degree of stability
is the damping of the closed-loop roots. Table 45 contains an example
closed-loop transfer function (6/6.). Notice that not only are the
denominator roots all stable, as assured because the uniform asymptotic
stability criteria are obeyed here, but that the minimum damping ratio

present is 0.67k.

Some additional observations can be made as to the system's dynamic
behavior by further examination of the 6/6, transfer function. Many of
the poles cancel exactly (or nearly so) with zeros for this transfer
function. These modes will, therefore, not appear in 6 response to B¢
commands. The resulting approximation to 6/6c shown at the bottom of
Table 45 reflects the closed-loop actuator characteristics (at 25.73)
and the well-damped short-period mode represented by the quadratic.

At this point, one might be tempted to conclude the stability assess-
ment, by correctly observing that the closed-loop denominator has per-
mitted identification of all the important aspects of stability. Yet
there is still much which needs to be said about a system's stability

beyond simple closed-loop root considerations. 1In particular, we are
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TABIE b5

CLOSED-LOOP 6/ 8. TRANSFER FUNCTION

CASE: UH1H HOVER Al.L 1LODFS CLOSED
DENOMIMATOR?

1.0000

¢ 10195 )y ¢ .31507 ) 33300 ) 33593 )

¢ .30520 y (15,4614 ) 25.716 ) 0 25,728 )

(¢ 22313 r L90723 v 83748 r 34882 3)

(( 47380 y 2.7741 v 1.8692 s 2.0498 ))

. 118.79 >

NUMERATOR TH/VTH FILE NAME? THVYTH.Z2CL

oLl FILE

~-251.70

(¢ .00000 Y .T1016E-03) ( ,24046 Yy ( .33300 bl
¢ .33300 Yy ( 15.968 )y U 25.716 )

(¢ .22283 y P0699 r 483499 r 34939 )

“=1.1565 =

—251.7(8) (8 + .00051) (5 + .24) (s + .333)2(s + 15.968) (8 + 25. 72) 5% + 2(.923) (.91)s + (91)2]
Ts+.102)(s+.315)(s8+ .335)(8 + .536) (s + .5)(8+ 15.61) (8 +25.72) (s + 25.773)

x 182 +2(.923)(.91)8 + (.91)21782 + 2(.674) (2. TT)s + (2. T7)?]

—251.7(s) (s + .00051) (8 + .24) i
(8+.102)(s+.315)(8 + .5)(5+25. T3)[82 + 2(.6Th) (2. TT)s + (2.77)2]
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interested in two things: general margins and the modes that would be

the first to go unstable as likely system parameters are changed.

The first concern is the particular margins of stability for each
loop. There are two common margins: the gain margin, which is the dif-
ference between the gain at the crossover frequency and the gain at the
—180 deg phase point; and the phase margin, which is the difference
between the phase at crossover and —180 deg. Figure 19 is an open-loop
frequency response plot for 6/8,, where %, [xdt, and 6 loops are open.
The gain margin of 21 dB and phase margin of 56 deg reveal the excellent
stability margins for this loop.

In addition, it is instructive to convert the phase margin, gy, to
an equivalent 1 in a pure time delay, e 9T, 1n physical terms this
delay, if added to the system, would be Jjust sufficient to destabilize
the system. The delay itself can be thought of as the low-frequency
measure of a large number of high-frequency leads and lags which are not

accounted for in our system model. If these are given by

- T

A
Il

then

n
T (Tis + 1)
Gns (=) (.8 + 1)
iVt
That is, the delay 1 is the sum of the high-frequency lags minus the
sum of the high-frequency leads. For the e/ec loop presented in Fig. 19

the allowable 7 is computed as

L. %M 56/57.3

wC 2-3

0.425 sec

This can be considered a delay or lag margin.
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Figure 19. Frequency Response for Open-Loop 6/6e
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Consider now the second concern; namely, given the gain and phase
margins for a loop, which mode will become unstable first as the gain mar-
gin approaches zero or added lags create a time delay which approaches %
This question can be answered with the use of an s-plane root locus plot
or a Bode root locus plot. Both are shown for the e/ec example in Fig. 20.
The root locus is a plot of the open-loop poles and zeros (symbols X
and [[] , respectively), and the locus of closed-loop roots. In Fig. 20a
we see the short-period root locus heading for the right-half plane as
the closed-loop gain increases. Thus, it 1s the short-period mode which
will become unstable first when the gain margin is zero. This is con~
firmed by the Bode root locus plot of Fig. 20b., Here the Bode plot and
root locus plot are combined. The important open-loop poles and zeros
are called out, as well as the closed-loop roots (the solid rectangular
symbols). The crosses which depict the second-order closed-loop roots
are shown moving into the right-half plane (at w £ 10 rad/sec) for the
short-period mode, thus identifying it as the "crucial" mode for the 6/6c

loop.

This completes the stability assessment for the 6/8, loop. The same
procedure should be followed for every other loop in the design. That
is, examine the closed-loop roots, compute the stability margins, and
identify the crucial modes. The results of this process for the ﬁ/ﬁc,

[ hedt/he, %/%e, [*dt/ke loops are presented in Appendix C, Figs. C-8,
C-9, C-10, and C-11, respectively. Notice that the h/h, loop has a gain
margin Gy = «=. As a practical matter, this is an impossibility and simply
indicates that one or more modes (and, indeed, one which is the crucial
mode) has been neglected., Although the crucial mode for this loop cannot
be identified, it is always possible to compute an effective 1 from phase
margin and crossover frequency which represents a crucial value for the

high-frequency leads and lags.

Many other techniques are available in the literature for stability
assessment, for example the Routh and Hurwitz tests (Ref. 26) and the
Nyquist stability criterion (Ref. 27). The methods used here have been
selected to give the best mixture of meaningful results from a combined

optimal/conventional standpoint.
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B. RESPONSE

Turn attention now to the system's response characteristics. For
this aspect of assessment the system's output variables are divided into
three classes:

® Primary controlled variables perform the explicit
commanded functions of the FCS. For the UH-1H
hover example these functions are rate-of-climb
command and groundspeed hold, so the primary varia-

bles are h and x as outputs or he and xe as error
quantities.

® Secondary variables are those vehicle output varia-
bles which remain after identifying primary varia-
bles. The UH-1H hover secondary variables include
6, 4, a, and UpSe-

® Controls, 5y and 8., for example, comprise the final
category.
The next three sections discuss the assessment of response characteris-

tics for each category of variables.
1. Primary Controlled Variables

The most fundamental single indication of controlled variable
response behavior is the response/command bandwidth. Among other things,
the bandwidth:

® Indicates the range of command frequencies over

which feedback acts to provide good command follow-
ing and error suppression.

[ ] Indicates the frequency range over which disturbances
are suppressed.

® Specifies the speed of response, since the bandwidth
is inversely proportional to the indicial response
rise time.
Because bandwidth properties play such an important role, appropriate
bandwidth values were made the key design requirements. Further, the
output variables (to be included in the regulator cost function) were
chosen to insure desirable low-pass properties and particular time

response behavior (e.g., including‘fﬁedi guarantees that the indicial
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response in h is such that ﬁe approaches zero in the steady state). Thus,
"bandwidth" will have its traditional meaning in a low-pass filter con-
text.

To be certain that bandwidth goals were met, we examine opened-loop
frequency response plots such as presented in Fig. 19. Here, for the
8/6c loop, the goal was a bandwidth of 2.0 rad/sec. The stretch of
—20 dB/decade slope on either side of the O dB crossover frequency (we)
permits us to approximate the bandwidth by ax. Similar bandwidth assess-

ment is indicated in Figs. C-8 through C-11 for the primary variables.

We have previously emphasized that the bandwidth numbers partition
the response into regions of action — regions where feedback is useful
in improving the response and regions where feedback effects are nil.

The details of the system behavior in these regions are most conveniently
addressed in the frequency domain, with the closed-loop response/command
and error/command characteristics being of particular interest. For
example, Figs. 21 and 22 present closed-loop Bode plots for the ﬁ/ﬁc and

Ee/ﬁc transfer functions, respectively.

Several essential aspects of the ﬁ/ﬁc response are apparent from
Iig. 21, There is good following of command input magnitudes at all fre-
quencies below the bandwidth of approximately 1.4 rad/sec, as evidenced
by the unity gain. Beyond that, the response to commands is smoothed
and attenuated (integrated once) out to 25.7 rad/sec, and even more
attenuated (integrated twice) thereafter (not shown). 1In addition, the
phase shift up to the bandwidth is nearly linear with frequency. This
closed-loop system response is dominated by only one lead and one quad-
ratic lag out to 26 rad/sec. In fact, the response can be approximated
by 1.4/(.Ts+1) for all frequencies below 26 rad/sec. Thus, the response
character of what at first glance seems to be a rather complicated trans-

fer function can be reduced to the simple form K/(Tis+1).

Similarly, Fig. 22 provides much information regarding the nature
of the ﬁe response to Ec. Here again the frequency response has three
distinct regions: for w < 0.1146 rad/sec it behaves as a zero position

error system; for 0.1146 rad/sec < w < 0.91 rad/sec it behaves as a zero

140



o1 . 10 w(rad/sec) 1.00

z0 S | |

’ Gppprox (jur)
Pl \\
o . - A

™)
E
U
o
E]
2
E -20
<
1
g
.
o
>
LY
k] S
~ ~ipo 'L
a
]
-~
o
fopg - —— . — e
CASE? UH1H HOVER ALL LOOFS CLOSED
LENOMINATOR
1.0000
t 10195 ) ¢ 313507 ) ¢« ,33300 ) L 233595 )
( 30520 ) C 13.4514 M W 25.718 y ¢ 25,726 B
(¢ .92313 r LPOT2Z y »,83718 ¢ 34832 )
(( &7380 s 2.7741 v 1.B392 v 2.0878 ¥
< 118,79
NUMERATOR HO/HOC FILE NAME? HDHDC.ICL
NEW FILE
40.908
1 ,101¥5 H { Ji50r » { {1300 } < 134501 ¥
¢ .50240 ) 5197 ) f15.414 )  25.726 }
¢ 47251 v 2.75%4 r 1.8825 v 2.04946 i3]
118.79
2oL 40.908(s + .52197) - 35.98
- 2
he rs?+2(.923)(.907)s + (.907)21 (s + 25.7) (s+1.1)(s+25.7)
G ( -w) _ 1.4
approx\dJ = e+ (accurate out to 25.7 rad/sec)

Figure 21. h/hc Closed-Loop Frequency Response
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velocity error system; and beyond the bandwidth of approximately 1.4 rad/

sec there is no error suppression (|he/hc| = 1).

Both the h/he and he/he Bode plots lead us to suspect that the mode
that dominates the h response is, not surprisingly, the path mode
(g = 0.923, w= 0.907). It is this mode that provides the general shape
for both plots. Indeed, Fig. 23 confirms this suspicion with a Bode root
locus plot of h/he, where the he and [ he dt loops have been opened. The
dominant mode is closest to the point of crossover, which approximates
the bandwidth due to the stretch of —20 dB/decade slope.

The discovery of the dominant mode for the h response leads naturally
to an examination of the transient time response behavior of this varia-
ble. Plots of both the indicial and ramp responses of h to Ec input are
shown in Fig. 24, The path mode does, of course, dominate the response,
as it did in the frequency response plots of Figs. 21 and 22. However,
the initial part of the indicial response is quite first-order-like, even
though the path mode is second-order. This is not surprising, since the
almost-critical damping of this second-order mode (¢ = 0.923) allowed us
to approximate the frequency response by 1.4/(.7s+ 1) out to 26 rad/sec.
The transfer function for ﬁ/ﬁc contains a lead term (the path mode) as
well as the quadratic lag, and the lead part of the combination provides
the overshoot in the indicial response shape. Thus, initially the
response is first order, with a time constant near T¢; then, after the
first 0.4 sec the response is that of the heavily damped path mode, with
the 12 percent overshoot attributed to the lead at 0.53 rad/sec. These
time domain characteristics reflect the dominant features of the frequency

response (Fig. 21).

A similar comparison can be drawn between the ﬁe/ﬁc frequency response
plot of Fig. 22 and the h time response to an ﬁc ramp input shown in
Fig. 24. Remember the three frequency regions which were present in
Fig. 22 — a region of zero position error, a region of zero velocity
error, and a region where the error was passed with unity gain. Those
same divisions can be made for the ramp response in Fig. 24. The h

response at low frequencies looks like that of an equivalent first-order
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system, 1.4(Tys+1), where Ty = 0.7 sec. At mid frequencies the response
exhibits the characteristics of a zero velocity error system, and begins
to approach the he input ramp. But the response never quite reaches the
command because the zero velocity error behavior is only active in mid

frequencies. Thus, there is ultimately a non-zero offset of the response
from the command. This is illustrated by the ramp delayed by To seconds.
Again, the characteristics of the ﬁ/ﬁc ramp response are consistent with

those we would predict from the ﬁe/ﬁc frequency in the frequency domain.

The command-following properties of the primary variables can also
be examined using the rms levels of the states, outputs and controls in
response to process and measurement noise. These are presented in Table L46.
Notice, for example, that the rms levels of ﬁc and h are approximately
equal (he = 1.0 ft/sec, h = 1.01 ft/sec), which corroborates the command
following behavior gleaned from both the frequency domain (Fig. 21) and the
time domain (Fig. 24%). The ability of this system to suppress error can
also be illustrated by comparing the rms level of he and he (he = 1.0 £t/
sec), he = 0.259 ft/sec). The rms level of error is approximately one-
fourth of the rms command input, which is expected in light of our pre-

vious observations regarding ﬁé/ﬁc in the frequency domain.

Considerations of the error suppression character of the rate-of-
climb loop lead naturally to an investigation of the system response to
gust disturbances. As a general rule of thumb the design should be indif-
ferent to gust disturbances, in order for the control system to perform
satisfactorily in actual flight. As stated at the outset, the behavior
of the system in the presence of disturbances is fundamentally a function
of the bandwidth. As such, the gust suppression question has already been
addressed in principle. An example of the h behavior in response to lon-
gitudinal and normal gusts is presented in Fig. 25. Gust suppression for

this particular variable is excellent.

This concludes a detailed example evaluation of the primary variable
response. The example used for the rate-of-climb variable showed it to
have satisfactory response characteristics in every response. To com-

plete the story, a parallel evaluation of the groundspeed (x) variable
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is necessary. Such an investigation was performed, and some of the results
appear in Appendix C. Again, satisfactory response was observed, and the

groundspeed. mode at 0.505 rad/sec provides the dominant behavior.

In the process of these examinations much has been learned about the
details of the optimal design. Also, the evaluation has shown that no

iterations are needed as far as primary responses are concerned.
2. Becondary Variables

Techniques that were appropriate for the assessment of primary variable
responses are again called upon at this stage. The bandwidth is still the
gingle most revealing measure of the secondary variable responses. Refer-
ring back to Fig. 19, which depicts the open-loop frequency response for
e/ec, we see that the bandwidth (equal to about we, due to the stretch of
—20 dB/decade slope) is 2.3 rad/sec, quite close to the design goal of
2.0 rad/sec. While secondary variable bandwidth can be used to divide the
frequency response into regions of feedback effectiveness and ineffective-
ness (similar to the primary variable assessment), the expected forms for
response/command and error/command frequency responses are changed. This
is because the secondary variables are usually inner loops and do not have
explicit command input points. For example, in the hover FCS we cannot
command pitch attitude (0); the closed-loop design requires us to command
groundspeed (%) instead. If, however, the groundspeed loop should fail
(due to component degradation, say) it would then be imperative that 6/6c
exhibit good command following, error and gust suppression and transient
response behavior, since the system would have to be commanded by 6c¢. This
Bc system 1s also a possibility as a primary system in its own right. We

will have occasion to discuss both these events in more detail later.

For now, we will rely on the Bode root locus plot of Fig. 20 to show
that the short-period mode, which is closest to uy, dominates the 8 re-
sponse. This is hardly unexpected, since the 8 and g closures provided the
IOL = 0.26279,
wgp |, = 0-92797; CspICL = 0.6738, "°SP|CL = 2.77T41). Reference 10, pages
80-87 also indicates a graphical method for determining the dominant mode

improved damping and stiffening for the short-period mode (gsp

by plotting the modal response coefficients as time vectors.
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With the dominant mode exposed, we proceed to an investigation of the
transient response characteristics. Again, the absence of an explicit
closed-loop 8. command point makes indicial and ramp responses to commands
meaningless. The real concern in the evaluation of secondary variable
time responses is for motion harmony and favorable (or negligible) coupling
between primary and secondary variables. For this reason, Fig. 26 pre-
sents the responses of h, &g, 6, X, and 5p to a 1.0 ft/sec he step input.
Tt is clear that 6 and h are almost totally uncoupled, since an ﬁc input
elicits very little response from 6 and a quite noticeable response from h.
This phenomenon can actually be explained on the basis of control activity.
Since dp mainly controls 6 while &¢ primarily controls ﬁ, and the controls
are almost uncoupled, we expect the 0 and h responses to be essentially

uncoupled as well. This point is addressed in the next subsection.

The same uncoupled behavior of h and 8 can be seen in their respective
rms responses to process and measurement noise. Table 46 gives the rms 8
responses as less than 0.1 deg for a 1.0 ft/sec rms ﬁc level. This further
confirms the high degree of h-p decoupling.

There is also interest in the response of secondary variables to gust
inputs. Figure 27 reveals that the 9§ inner loop is quite indifferent to
gust disturbances. This is desirable, although not really imperative,
again because 6 is not a controlled variable. But if the X loop should
fail or be switched out, 1t is reassuring to know that this inner loop

exhibits good gust suppression.

The secondary variable 0 has demonstrated satisfactory response charac-
ter during the several stages of its assessment. One important difference
in the methods used to evaluate primary and secondary variable responses
arose in connection with command following and error suppression. Unlike
the primary variables, the secondary variables have no meaningful command
points. We must therefore depend on open-loop transfer function charac-
teristics to divulge the dominant mode(s). In addition, the concerns in
the time domain center around motion harmony and the extent of inter-
variable coupling (or decoupling) rather than rapid and accurate response

to commands.
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3. Control Activity

The third area of response assessment has an emphasis different from
the first two areas. Since the control actuation bandwidths are at high
frequency (25.7 rad/sec for the UH-1H example), the command following,
error suppression and time history characteristics are fairly uninterest--
ing. Instead, the evaluation of control activity centers around the fol-
lowing two considerations: the level of control activity required by the

controller and the extent of control cross-coupling.

The question of appropriate control activity levels was first addressed
during the regulator synthesis. As the final step, a measure of control
activity (positive zero-crossing rate) was used to ascertain whether or not
the cost function weights on éB and éc in Rg were appropriate. As it turned
out, the main rotor collective control point was too active, and thus the
cost function weighting on éc was increased by an order of magnitude. This
10:1 ratio of éC:éB discourages use of the &p control point in the regula-
tor synthesis, and positive-going zero crossing rate for &p showed the

desired decrease.

There are several other measures of control activity level which can
be used at this point in the response assessment. These are illustrated
in Table 47. The first two measures are the rms levels of the control posi-
tion and control rate. These values can be compared to the limiting control
capabilities of the particular aircraft. For example, the UH-1H longitu-
dinal cyclic has a 13.0 in. maximum travel, while the main rotor collective
maximum travel is 10.7 in. We can see that the rms levels of dp and Bp are
well below the corresponding maximum capabilities. Thus, if the assumed
inputs are realistic estimates the actual control activity should be moder-

ate.

Table 47 also shows the number of axis crossings per second (Ny), the
number of positive-going axis crossings per second [NL(O)], and the number
of positive exceedances of 10 percent full travel per second [ENL(.1th)].
The first two indicate the level of monitoring activity required of the
pilot in supervisory or, for that matter, the manual activity needed if

the pilot were to take over from the automatic system. These are
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TABIE 47. CONTROL ACTIVITY

R : 1 %
Axis crossings per second = — =
ngs p No T ox
Positive exceedance of x _ No —=x2/2q,
per second Ny(x) =
0x = rms of control rate
ox = rms of control position
Longitudinal Main Rotor
Cyelic, DB Collective, DC
ox (in.) 0.0k4oL 0.0921
oz (in./sec) 0.0466 0.255
Ny (1/sec) 0.300 0.881
N,(0) (1/sec) 0.150 0.4k
Np,(-1th)® (1/sec) 5.6 % 1677 8.8 x 10_l+
8Positive exceedance of 10 percent full travel per
second (for DB, 10 percent full travel = 1.30 in.,
for DC, 10 percent full travel = 1.07 in.)
considerations which come under the heading of "handling qualities." The

NL(.1th) measure can be used in a probabilistic sense to determine the

average time between exceedances of 10 percent full travel [1/2Nf(.1th)].

Up to this point, the investigation of control response has not
addressed the extent of control cross-coupling. Decoupled controls are
desirable in that they permit control of variables from a single control
point. This simplifies the controller both from an implementation and a
performance standpoint. There are many quantities that reveal the nature
of control cross-coupling; two will be presented here. The controller
transfer functions that involve control position and rate are given in
Table 4LB. The transfer function approximations are divided into low, mid
and high frequency regions. It will be recalled that DB and DC are the
measurement vector components corresponding to best. estimates of &p and
Bc- As such, they are not the integrals of the control variables éB (DBD)
and éc (DCD). Accordingly, to avoid confusion, the controller transfer

functions in Table 48 are referred to as DBD/DB, etc.

The low, mid and high frequency approximations for DBD/DB, and the mid

and high frequency approximations for DCD/DC are essentially pure gains.
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This is the expected result of designing the actuators as high gain inner
loops. The low frequency washout present in DCD/DC Ti.e., 27s/(s+ 15.6)
in Table 48] is undesirable in a physical installation (e.g., for actuator
rigidity considerations) and may be considered an anomaly of the optimal

design process.

The cross-coupled transfer functions, bp/8y and 5u/dp, illustrate a
second point, i.e., that the controls are essentially decoupled for the
frequency region above 100 rad/sec. In this frequency band, both transfer
functions revert to low gain quantities which may be neglected. In an
upcoming section we will discuss the advantage of this control decoupling,

namely, it provides a means of simplifying controller implementation.

A further confirmation of the cross-coupled control characteristics is
found by referring back to the indicial transient response plots in Fig. 26.
The time responses of five variables to a 1.0 ft/sec Ec step input were
first used to examine the harmony of the primary and secondary variables.
These time responses also illustrate the degree of control decoupling. For
a step ﬁc we see a corresponding d¢ response, in the positive direction.
Meanwhile, no &p response is evident. From this we can conclude that &g
provides the h control, and that g and ¢ are essentially uncoupled.
Similar time responses to, say, an X, would show corresponding responses
for %, © and 8p, illustrating that &g is used in X and 6 control and again

that &y and 8c are not significantly cross-coupled.

This concludes our discussion of the design's response character. We
have divided the preceding discussion into three areas: primary controlled
variable responses, secondary variable responses and control responses.

The primary variables were characterized by good command following, error
suppression, indifference to gusts, and smooth, well-damped, minimum-tailed
transient responses. For each primary variable we identified the mode that
dominates that variable's response. The assessment of the secondary varia-
ble's responses was mainly concerned with motion harmony and coupling among
the primary and secondary variables, and identifying that mode for each
variable which dominates the response. Finally, the evaluation of the con-
trol activity centered on the levels of control activity and the extent of

control cross-coupling.
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TABIE 48. CONTROLLER TRANSFER FUNCTIONS
AND APPROXIMATIONS

CASE: UMIH HOVER 122LONG 2-FEB-79 CONTROLLER TRANSFER FUNCTIONS

DENOMINATOR:
1,240
{ .31537 ) ( .33320 ) (15.614 )
< 1.6383 >
NUMERATOR: cin/ DB NUMERATOR: DCD/ DB
-29.879 .51744E-22
( .18185 ) ( .33300 ) ( 15.428 ) (-.11656 ) ( .33302 ) {-2054.8
<-27.917 > < .41471 >
NUMERATOR: pan/ bC NUMERATOR : DCD/ DC
.51781E-31 -27. 008
( .29977 ) ( .33308 ) (-4127.1 ) (-.9488BE-31) ( .333a8 )y ot .33773
<-21.332 > < .28821 >

LOW FREQUENCY MID FREQUENCY HIGH FREQUENCY
APPROXIMATION APPROXIMATION APPROXIMATTON
(0.3 £ w5 15.6 (15.6 < w < 206k. (2064, = w)
rad/sec) rad/sec)

DBD  —29.879(s +15.43)

DB (e +15.6)

= —29.553 —29.879 -29.87h
DBD .052(s =4127.1) .052(s —4127.1)
nC (s+15.6) s

= 13757 —214.6/s .052
DCD .0052(s —206k4.8) .0052(s —2064.8)
DB (s+15.6) s

= 685 —10. T4 /s .0052
DCD —27.008.5
DC (s + T5.55

= —=1.73s 27.008 27.008
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C. SENSITIVITY

The design assessment, in addressing questions of stability and re-
sponse, has exposed performance characteristics only for the system as
modeled and only within the intended operating enviromment. It is equally
important, however, to analyze the effectiveness of the design in various
off-nominal situations. Thus, we wish to examine the system's sensitivity
to airframe variations, sensor thresholds, major component failure and
the like. Following Table 4}, these examinations are divided into three

areas:
® Sensitivity of key response modes.
® Sensitivity to parasitic nonlinearities.
® Graceful degradation.

The next sections discuss each area in turn.
1. Key Reaponse Modes

The assessment of system stability and response led to identification
of some key response modes for each variable: the crucial mode, which
becomes unstable first; and the dominant mode, which shapes most of a
variable's response. These may or may not be the same mode. Here we are
concerned with the sensitivity of these key modes to off-nominal condi-
tions, component tolerances and variations, and state equation uncertain-
ties, nonlinearities and simplifications. It is possible, of course, to
perform a sensitivity analysis on all modes of each variable. But the very
fact that we are able to identify key modes means that other modes are
less important and also less sensitive. Thus, their assessment may be

deferred until a detailed design evaluation is undertaken.

Because "tolerances,' "variations," "off-nominal conditions," etec.,
all tend to be small, we can enlist first-order gain and parameter sensi-
tivities, which derive from small perturbation considerations, to quantify
the key response mode sensitivities. First-order gain sensitivities com-
pute incremental changes in closed-loop pole locations due to incremental

changes in open-loop gains. This gain sensitivity is equal to the
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negative of the modal response coefficignt for the particular closed-loop
root, and is a measure of the slope along a root locus. As such, it is
meaningful to plot the sensitivities on a root locus, as shown in Fig. 28.
Here the first-order sensitivity of the short~period mode to incremental
Kg changes is plotted on the /6. root locus. Remember that the short-
period mode is the critical mode for the & loop. Also listed at the bot-
tom of Fig. 28 are the modal response coefficients for every other root

of e/ec. In general, the incremental gain sensitivities for these other
roots are quite small, reinforcing our assertion that only the key response

modes have significant sensitivities.

First-order gain sensitivities are useful in evaluating the effect of
changing the closed-loop gain upon the location of the closed-loop roots.
If, however, we wish to assess the effect of changing parameters of the
controlied element upon the root locations, we can use parameter sensiti-
vities. The software (Ref. 23) can be used to compute the sensitivity of
each regulator eigenvalue to incremental changes in the F, G and C matrices.
This reflects the sensitivity of the closed-loop roots to any uncertainties
in the various stability derivatives, for example. Figure 27 illustrates
the parameter sensitivity of the path mode for the h variable. The lower
portion of the table is the entire matrix of sensitivities of the path
mede (the dominant mode for ﬁ) to changes in the components of the F matrix.
These sensitivities are normalized by the path mode eigenvalue, and are
expressed as a magnitude and phase (in degrees). We can plot element F(6,5)
(outlined in the sensitivity matrix) on a root locus for hg/h., to indicate
the direction in which the path mode would move for an incremental change
in the My stability derivative. (Table B-2 in Appendix B shows that the
element F(6,5) is the My derivative.) Each non-zero element in this sen-
sitivity matrix could be plotted as a vector on the root plot in the com-
plex plane to produce a graphical representation of the parameter sensitivi-
ties of the system design. This provides a means to account for undertain
specification of the controlled element, and the effect of this uncertainty

upon the closed-loop roots.
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Figure 28. First-Order Gain Sensitivities for ¢ Loop
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We have discussed some possible techniques for evaluating first-order
sensitivities in order to assess the behavibr of the key response modes
dvue to various off-nominal conditions. In particular, gain sensitivities
are useful in computing incremental changes in closed-loop root location
due to changes in closed-loop gains, while parameter sensitivities reveal
the effect of controlled element parameter variations upon closed-loop
root location. Only two key modes were presented as examples; in the
course of the assessment it is necessary to examine the sensitivity char-

acteristics of all key modes.
2. Paraslitic Nonlinesrities

In constructing a linear set of state and output equations for optimal
controller synthesis, various nonlinearities were neglected. The assess-
ment of key response mode sensitivity can be useful to quantify the first-
order effects of some of these neglected nonlinearities. 1In a detailed
design evaluation, however, it is necessary to have a more complete under-
standing of these parasitic nonlinearities and their effect upon system
performance. Because this is a detailed design task, we will give only an

outline of the assessment procedure here.

One basic problem arises when certain types of nonlinearities produce
limit cycle behavior. The most common types of parasitic nonlinearities
are threshold-like phenomena in the sensor and actuation/load elements.

These can cause problems in two ways:

[ If one of the control points has a higher threshold
than the others, then for some small region in the
control space the feedback to that control point is
not active. For the UH-1H, suppose that the thresh-
old for 5p is larger than that for 3¢. Then for some
input levels, only the 8¢ control is active.

® If each of the sensors has a different threshold,
then in some region of the control space certain
sensors will not be sending useful signals. Thus,
although all control points may be active, several
of the sensors may have outputs equal to zero and
the system is simply incomplete, possibly even unsta-
ble in the threshold region.
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As an example, suppose that the he and [ he dt sensors have higher
thresholds than all other UH-1H sensors. Examining the root locus and
transfer function for the 6 closure (Fig. 30), we see that, for some gain
values, the 6 closure has right-half plane roots when the he and [ thedt
loops are open due to thresholds. This would lead to low-amplitude limit

cycle behavior.

It is therefore imperative to examine possible combinations of open
and closed loops in order to identify those which exhibit oscillatory
behavior. The use of Bode plots in conjunction with describing function
techniques (Ref. 26) serves to estimate the resulting limit cycle ampli-
tudes. Of course, the details of the limit cycle itself are dependent on
the nature of the nonlinearity. We have given an example of the problems
that occur due to differential control point or sensor thresholds. There
are two additional categories of parasitic nonlinearities that should also
be considered in practical flight control systems: hysteresis, due to
c&ble/pushrod-Coulumb friction interations; and valve friction operation
within the actuator's closed loops. These are discussed in greater detail
in Ref. 28.

3. @raceful Degradstion

Above we have examined the problem of design sensitivity on a small
scale (that is, the sensitivity to relatively small effects such as off-
nominal conditions and parasitic nonlinearities). Here we consider major
component failure, to ascertain whether the system performance will degrade
gracefully. This is a major concern in the operating environment, and

should be a consideration even within the preliminary design phase.

As one might expect, the techniques used for assessing graceful degra-
dation depend on the controller architecture. Here we consider two pos-
sible controller mechanizations, which comprise two limiting cases. The
first is a single thread system, wherein the controller gains are fixed
and satisfactory performance is obtained only when all elements are work-
ing correctly. These are typical of the majority of flight control sys-

tems today. However, when fail-safe or fail-operational requirements are
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present, modern FCS mechanizations use two-, three-, or four-fold
("threads") redundancy.

Considerations for a single-thread design's graceful degradation are
quite straightforward, and in fact very similar to techniques used in
determining the design's sensitivity to parasitic nonlinearities. We
noted that for some small regions in the control space certain control
points or sensors could be inoperative due to differential trehsolds.

In an extension of this idea, we can identify some large regions of the
control space wherein control points or sensors are imperative due to
component failure. Thus, the evaluation of the effects of differential
thresholds and component failure in single-thread installations can be
conducted in parallel. For the former, the differential thresholds and
the control region affected are usually small, whereas for the latter the
differential thresholds are infinite and the control. region affected is

quite large. The analysis is identical, however.

The real drawback in assessing a single-thread architecture is the
enormity of the task. It is necessary to make an exhaustive catalog of
likely failure possibilities and examine each in detail. For a multiply-~
redundant system, the necessary work is far greater stilil, if fail-

operative performance is to be guaranteed.

At the other extreme from the single-thread system is a system employ-
ing an adaptive filter-observer controller architecture. Such a control-~
ler is automatically reconfigured by an onboard camputer if one or more
components should fail. It is the computer's job to detect the failure
and recompute the necessary controller gains, similar to the controller
synthesis discussed in Chapter IV. For this type of mechanization the
workload in analyzing graceful degradation is substantially reduced. The
system 1s easily assessed using the software developed in this work; the
task consists of systematically deleting sensors and control points, and
using the optimal controller software to synthesize the resulting con-
troller gains. Each of these "degraded" designs must be subjected to
stability and response assessment, in order to quantify the effects of

degradation. This approach does not take into account the software and
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hardware which must detect failures and recompute controller gains, nor
does 1t account for transients in the process. The method will, however,
provide an uppér bound on degraded system peiformance. The matter of
system behaviof in the transient region during the controller recomputa-

tion is perhaps best evaluated using the actual controller.

4. Concluding Remarks on System
Property Asseasment

The assessment of system properties illustrated here has been organ-
ized so that a logical progression exists from simple to complex, pre-
liminary design to detailed design, qualitative to quantitative. In the
process a much clearer understanding of the essential nature and behavior
of the optimal controller has been gained. 1In fact, there has been a
qQuantum increase in our understanding of the optimal controller synthe-
sized in Chapter IV; there we had only four matrices that provided infor-
mation about the design (AF, Bp, Cp and Dy). Now we are equipped with
much more insight into the stability, response and sensitivity character-
istics of the system. The remainder of this chapter is devoted to assess-

ing certain properties that are peculiar to the controller.

In the following sections we hope to better define and improve our
understanding of the optimal controller itself. Attention will be focused
first on the gain levels produced by the design. Our concern here lies
both with too high and too low gain values — with control saturation as
well as minimum increment of control. These extremes, taken together,
provide measures of how well the controller uses the available dynamic
range of a channel. The second property to be considered relates to the
sensor array. In this connection we desire to exercise hardware and soft-
ware economy in the sensor/equalization complex and to evolve a controller
that will perform satisfactorily over a wide range of operating environ-
ments. The discussion of these issues is not meant to be exhaustive, but
it does cover those controller properties that should be evaluated in the

preliminary design phase.
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D. GAIN IEVELS

The controller gain levels provide some important insight into the
behavior of the FCS. Obviously, we are interested in both limiting
cases:

® What is the magnitude of each output that corre-
sponds to saturation of each control point?

® What is the magnitude of each output that corre-

sponds to the minimum increment of control for

each control point?
Saturation levels permit us to identify boundaries in the control space
which separate the space into regions where control can be exerted to
modify the basic vehicle dynamics. Outside of these regions, the dynamic
performance characteristics are those of the vehicle alone. On the other
hand, the minimum increment of control establishes the control precision.
The levels of the output variables which correspond to the minimum incre-
ment define an inner region of the control space wherein control is
effectively not present. Inside this region the system dynamics are,

again, those of the vehicle alone.

The assessment of gain levels involves a tradeoff between too high
gains, which cause the control boundaries to be reached with small inputs
(bang~-bang control) and too low gains which require large inputs to even
force entry into the available control space. The level required to satu-
rate a control also depends on the type of actuators; full authority paral-
lel servos generally saturate at a larger percentage of maximum travel
than restricted authority series servos. Regardless, the first step in
determining the effective control space boundaries consists of defining
the control point saturation levels. For the UH-1H, with its full author-
ity parallel servos, the maximum longitudinal cyclic travel is 13.0 inches,

while the maximum main rotor collective travel is 10.7 inches.

Next we turn to the Dp matrix, shown in Table 49, which contains the
gains between each output and both control points. The units are also
indicated. Since the elements of the control vector are control rates,

and the saturation levels are control positions, it is necessary to divide
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TABIE 49. GAIN IEVEL ASSESSMENT

DF MATRIX
1

2 3 4 5 6 7 8 9
uo Q ™ D8 nc HDE Hor XD XDI
H - -! 1
! 21,5 538. 0.149E+04 -29.9 #.518E-91 -9.717 ~3.252 -26.6 -1.89 ! p8D
1 !
1 H 2
1 =42.5 1.39 79.8 3.517E-92 =27.¢0 4.16 2.16 -9.435 -1.221E-21! DCD
1 !

in. /sec in./sec  in./sec  in./sec in./sec in./sec  in./sec in./sec  in./sec
f't/sec rad/sec rad in. in. 't [sec £t £t /sec ft

MAGNITUDE CORRESPONDING MAGNITUDE CORRESPONDING TO
CONTROL GAINS TO CONTROL SATURATION MINIMUM INCREMENT QF CONTROL
(K3) (Umpx/KY) 2 (upgin/K3) ©
kP Kic zg}gx zr?lgx zriﬁn zl?gn
h 'gf/siené 1;2}81'2' 18.1 ft/sec 6.8 ft/sec .087 ft/sec .0 ft/sec
qQ ';;:/:':é 'gg:‘;gi’;' L1.4 deg/sec 13375 deg/sec .199 deg/sec T8 deg/sec
8 .Sge;.n. '05;3;“' 14.9 deg 206 deg 072 deg 1.2 deg
he ’251;81'2' ;\?;S:Z 542 ft/sec 69.5 ft/sec 2.6 ft/sec .41 ft/sec
[ hedt ‘Oof\:g in. .OBﬁin. 1542 £t 134 £t 7.37 £t .78 £t
X 'SE/B].:C' 3165:2 14.6 ft/sec 669 ft/sec .07 ft/sec 3.91 ft/sec
[iay 2083 in. 000020 206 £t 13575 £t .992 £t £t
& Bppax = 13 1n., Sggay = 10.7 in.

P 8Bran = SCgin = 1/16 in.
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each element of the Dp matrix by the appropriate gain between the control
position and rate. For example, each gain between the outputs and 63 is
divided by 29.9, the gain between &g and éB' The gains are thus expressed
as inches of control per units of output. These normalized gains are
listed in Table 49.

Dividing the saturation levels by the normalized gains gives the mag-
nitude of each output which corresponds to saturation of the &y or 3¢
control point. The smaller of the two anumbers for each output defines
the control space boundaries within which linear control can be exerted
to modify vehicle dynamics. These quantities may also be used to elimi-

nate the ineffective gains from the Dp matrix.

We can also compute the output magnitude that corresponds to the mini-
mum increment of control, by dividing the minimum increment of control by
the normalized gains. The term "minimum increment of control" refers to
the smallest amount a control effector or surface will move, regardless of
input level. The minimum increment of control exists because of friction
and other thresholds, and defines the precision with which a given control
surface can be positioned. A typical power amplifier-actuator-load combi-
nation has a dynamic range of 100-300; thus, we have chosen to use 1/16 in.

a8 the minimum increment of control for the computations in Table 49,

The resulting output variable magnitudes that correspond to the mini-
mum increments of control define the inner boundary of the linear control
space. They can also be used to eliminate ineffective controller gains.
For example, we see that using 8y to control the pitching velocity, q,
provides an accuracy of approximately 0.2 deg/sec. If B¢ were used, the
accuracy is T8 deg/sec! The main rotor collective is obviously not useful

o} -
in commanding pitching velocity and thus the gain KqC could be eliminated.

Using the above reasoning, we can eliminate about half of the con-
troller gains, which results in the simplified controller of Fig. 31.
One should be certain to determine that this simplified structure does
not differ significantly from the one synthesized in Section IV by com-
paring the stability, response and sensitivity characteristics of the two
desgigns. The desire for a simple system leads naturally into the sensor

array assessment of the next section.
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Figure 31. Simplified Controller Gains
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E. SENSOR/EQUALIZATION COMPLEX

This is the third look at assessment of the sensor complex. It was
first considered back in the filter-observer synthesis, when the rms state
estimation error was compared to the desired error budget. If the budget
was exceeded, the sensor array was clearly not able to provide an accurate
estimation of the states. Alternately, if the estimation error was well
within the budget, sensors might be deleted in the name of cost effective-

ness and other such considerations.

The second pass at assessing the sensor array occurred during evalua-
tion of the controller gain levels. Here it was seen that many ineffec-
tive controller gains could be eliminated, with no discernible performance

degradation. The result was a further simplified controller.

Now we turn to two further considerations for the sensor complex. The
first is sensor/equalization economy, which refers to the desire for mini-
mum compensation of the vehicle dynamics and a minimum array of sensor and
equalization computation to achieve performance goals. This desire arises
out of considerations such as cost, reliability, maintenance, and the like.
Referring back to Fig. 31, note that certain small gains in the Ap and By
matrices have been set to zero. This is based on control realities, but
is -also consistent with economy of equalization. The importance of re-
evaluating the stability, response and sensitivity of this further simpli-
fied system has been emphasized because a design which does not meet per-

formance standards is useless, regardless of how simple it may be.

Examination of certain eigenvalue sensitivities can divulge the
effects of deleting some controller gains upon the closed-loop root loca-
tions. This was discussed previously regarding first-order parameter sen-
sities of the eigenvalues to changes in the F and G matrices. Here we use
first-order eigenvalue sensitivities to changes in the regulator matrix C.
An example of the matrix sensitivities for the short-period mode eigen-
value is given in Table 50. The only significant sensitivities here indi-

cate that the important controller gains are:
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TABIE 50

SENSITIVITY OF SHORT-PERIOD MODE
TO C MATRIX CHANGES

NORMALIZED C MATRIX SENSITIVITY TO EIGENVALUE : -1,.87 2.45
1 2 3. 4 5 6 7 B 9 10 . . 11 12 .,

. X1 ug  xe2 Wg xe3 by xes U X07 W x28 q X29 0 x12 B3 x11 8¢  x12[he x13x x12 [xadt
= - - dt -

H T T e _-—— 1

| 2. 0290 2.092 2,223 3.3165-83 ra.xgas—n I 3. 4278-02 1 8.471E-83 ,a.zeas-m-'l 3.127E-93  2.939E-25 .450E-24 ,396E-251 1

92.2 2.2 92,0 180. 2,020 2. 289 182. 188. 189. 8a. .

: 9 l0.000  a.009 | Llsa. 182 2.292 fsa.” 1 oso

l r== == FITeT T oS !

! 9.209 2.002 2.209 2.1858-93 |9.5260-31 | 9. 1098-3 8.4716-35 9.1978-33| 1.0 | 9,131g-32 | 9.335-35 9.7526-06! 2

TR 92.2 32, 3993 tarsas | isa . 182. {188, | isa. | olaad 3330 1 ocd

r =
] {

L Indicates significant sensitivity



W, 4, 53 =™ OB

W, 3¢ f__fle at -3¢

Two observations can be made. First, we presumably could have picked in
advance which sensitivities would be important based on the controller
gains that were eliminated. We see that their presence has negligible
effect on the location of the short-period mode, based on the sensitivity
magnitudes of the corresponding deleted terms in the controller gain

matrices.

The search for a practical optimal controller, which has guided our
synthesis and assessment throughout,‘leads to one other goal for the
design. This is the desire for satisfactory performance over a wide range
of operating conditions. BSuppose, for example, that it was necessary to
store a redundant set of controller gains for ten different helicopter
operating setpoints. The storage problems alone prevent such a design
from ever being used in a real-world situation, not to mention the huge
expense involved in assessing the performance of all ten designs. What
we would prefer is a single design that i1s easily adapted to almost all

operating modes.
The concerns here are guided by questions like:

Suppose we wish to create a command attitude (Be) system
from a rate-of-climb command (he) design simply by open-
ing the h loops. Does the resulting 6. system exhibit
satisfactory stability, response and sensitivity charac-
teristics, and if not, how can they be improved?
It is obvious that the desire for commonality of elements/gain settings
ié closely related to the desire for graceful degradation. Thus, the sce-
nario posed above can be examined in parallel with the behavior of the
6 loop when the h loop has degraded. These kinds of considerations insure
that the optimal controller that is ultimately implemented is as simple

and universal as possible.
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F. BUMMARY

In summsry, we return to our original goals in assessing the design

to see whether we have been successful.

® Determine whether design goals have been met. The primary de-

sign goals in this work are the varisble bandwidths that are set using
the regulator cost function. An examination of the frequency response
plots for the closed-loop system and various open-loop transfer functions
assured that these bandwidths were attained. In addition, a good stretch
of —20 dB/decade slope on either side of the open-loop frequency response
crossover points was also created. This allows the bandwidth to be ap-

proximated by the crossover frequency.

Many other secondary design goals were also attained. These include:
a filter-observer that has an rms state estimation error within the error
budget; zero steady-state response of the two primary error variables,
accomplished by including the integrals of these variables in the regu-
lator cost function; and a controller that provides control decoupling
for the longitudinal degrees of freedom. Each design goal was produced
by a specific synthesis step (e.g., computing the regulator cost function
to obtain the desired bandwidths) and the assessment was used to verify

the desired results (and sometimes to gulde iterations).

o Define guantitatively all the important properties of the system.

Three examples were cited to illustrate this goal. The first was to expand
the scope of the results. When design synthesis was completed, the end
product was a set of four controller gain matrices. It was practically
impossible to predict system and controller properties and performances
based only on looking at this rather compact collection of gains. Instead,
the scope ot the design was expanded to include frequency responses, tran-
sient responses to commands and disturbances, root loci, various stability
criteria, sensitivity criteria and many statistical metrics. All were

essential in obtaining a quantitative design assessment.

The second example given for this assessment goal was to highlight the

system's dominant properties. In both the stability evaluation and the

175



response evaluation we were able to identify, for each variable, those
modes that dominated the particular characteristics observed. In doing
so, a fairly complicated transfer function was invariably reduced to a
much simpler and more manageablé one, making the stability and response
behavior easier to comprehend. Often these dominant modes provided a
convenient method for partitioning the response. The partitions corre-
spond to certain well-known systems (such as zero position error, Zero

velocity error, etc.) and the behavior is thus more readily analyzed.

A third example was to reveal the sensitivity of dominant properties
to uncertainties. Having identified the dominant modes in connection
with stability and response characteristics, we were then able to predict
the effect upon system behavior of changes in these dominant modes. These
"changes" ran the gamut from off-nominal conditions, controlled element
equation uncertainies and simplifications, through thresholds, hysteresis
and other parasitic nonlinearities, to component failure. The goal, of
course, was to éssure satisfactory FCS performance in the face of any or
all such uncertainties. The sensitivity is variously quantified using
Tirst-order gain and parameter sensitivities, describing fumction analysis,

and failure simulation.

® Broaden the understanding of the optimal system design results.
This goal guided all of the techniques used. Too often, an optimal con-
troller design is only a theoretical solution because the design results
are not well understood. In the introduction we gave three examples of
the breadth of understanding desired. The relative importance of the
various controller partitions was illustrated in the controlled gain level
considerations. On the basis of control saturation and minimum increment
of control we were able to define control regions for each output varia-
ble. The effectiveness of each control point in regulating each output

quantity was also evaluated.

Many aspects of the controller behavior could be attributed to speci-
fic factors in the controlled element as a result of the assessment. For
instance, the steady-state error response characteristics for the primary
(or outer) loops were estsblished. Dominant modes in various responses
were identified. Conditions under which control poles are independent of

the regulator solution were identified.

17k



Implications for future design strategy appeared at each assessment
step. In the synthesis of the controller little attention was paid to
questions of graceful degradation and commonality of elements. From our
assessment of these design aspects it is apparent that more considera-
tion should be given to systematic analysis of these features during

design synthesis.

® Explore simplification of the design which may lead to a simpler,

more practical controller. Throughout the assessment we have been con-

cerned with design simplification. This began with identification of the
dominant system properties and their sensitivity to uncertainty. Simpli-
city was also paramount in considerations of controller gain levels, sen-
sor array, equalization economy and commonality of elements. Although
simplicity was continually emphasized, it was also stressed that the
simplified systems should be rigorously analyzed to insure that the sim-

plification was not accompanied by a loss in performance.

® Investigate the implications of controller architecture on results.

Such an investigation was conducted during assessment of graceful degra-
dation. This particular aspect of the evaluation was dependent on the
controller architecture. We exam%ned only two candidates — a single
thread, multiply-redundant controller and an adaptive filter-observer
controller — and saw that these two mechanization strategies required
quite different assessment techniques. The resulting performance impli-
cations were also different, as well as the implementation problems. From
Just two example architectures it was seen that the controller properties

can be quite implementation-dependent.

[ ] Generalized design for other applications. The imposing task that

characterizes the assessment of a new FCS design makes it desirable to
design a system that is useful over many vehicles and many operating modes.
This aspect was touched upon when we looked at the suitability of a given
design in several operating modes. Thus, it was desirable to permit an

he system to become a 8, system simply by opening the h loops. We could
also examine the performance of a candidate FCS design in various aircrafd,

perhaps in a simulation environment.
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So we see that the list of assessment tasks enumerated in Table ik
hags allowed us to attain our assessment goals. Figure 32 depicts a flow
chart that could be used in design assessment. If it is ever necessary
to interrupt this flow, due to the need for redesign, the chart should
be re-entered at the top. This is to insure that the design always meets

all assessment goals.

In final conclusion, it cannot be emphasized too strongly that the
fundamental purpose of design assessment is to provide an in-depth under-
standing of the candidate system properties and behavior. This enhanced
comprehension is vital in an optimal controller design; without it, such
designs will be overly complex and the total system behavior will be
poorly appreciated.
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APFENDIX A

TRANSFORMATIONS FOR SINGULAR FILTER PROBLEMS
ENABLING EIGENVECTOR DECOMPOSITION

This appendix documents a transformation of the Euler-Lagrange equa-
tions for the optimal state estimation or “filter® prgblem. This trans-
formation is motivated by a desire to solve singular filter problems
wherein some or all of the measurements are noise free. Attention is
restricted to the steady-state solution for constant plants. Solution
without transformation via existing computer codes (e.g., Ref. A-1 as modi-
fied by R. Bach and G. Slater) is not possible because the inverse of the
measurement noise spectral density matrix is required. Transformation
for continued use of these codes is recommended since the codes make use
of the robust and efficient QR algorithm for eigenanalysis. Furthermore,
this approach satisfies our research needs for a minimum of additional

software development and risk of encountering numerical difficulties.

Consider the plant and measurement equations

X = FX + 0Gu+TWw s x(0) = %o
Z] = H-IX + V-l
Zp = H2x + Vo
where
Vector Dimension Vector Name
X n State
Control
W q Process noise
Z1 mq Noisy measurements
Zp my Noise-free measurements
V1 m, Measurement noise
Vo o Dummy measurement noise
A-1



G, I"y Hq and Ho matrices are assumed to have full rank. Process and meas-

urement noise are Gaussian with

]
(e}

E[w] = O E{v4] E[fvo] = 0

Efw(tq)w' (tp)] Pt = o)

E[vy(tq)v' (t5)]

Ry8(tq — t5)

E[vo(tq1)va(ts)] eRod(tq — o)

A
€ =0

w, vq and v, are mutually statistically independent random processes.

Their power spectral densities, Q, Ry and Ro, are diagonal matrices having
full rank.

It is always possible to order the measurements so that noisy measure-

ments are in zq and noise-free measurements are in zp as reflected in the
above equations.

Also, it is always possible to reorder the state vector elements by
means of elementary transformations to obtain Ho = [H21 H22] wherein Hoo
full rank.

Furthermore, the transformation matrix, T, defined in Table A-1 can

always be used to obtain Ho in the form:
Hp = [Hpy Hppl = [0 Il
Next, consider I’ in partitioned form wherein I'; has m, rows.

I’

o

Form A 2 T', QTp. Let the rank of A" be defined as r. Assume for the
present that A7V has full rank, r = m. This assumption is equivalent



Z1

22

Hy

and Hpp is mpxXmo and nonsingular.

X = T'X where

results in

X1

Fi1

Fa1

Foo

TABIE A-1.

TRANSFORMATION MATRIX

FX+Gu+Tw R

I 0
s
Hpy Hpp
x1 3(-1
2z Hpy X1 + Hoz
= F11 Fe2
TFT ! =
For  Fo2

- - = —l=
Fi1 = Frp Hpp Hpg
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Hpp Fop Hop + Hp1FoHpp

_ Gq
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Go
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0

x(0) = %o

The nonsinguwlar transformstion, T,

I 0
-
il A -l
—Hpp Hp 22
X2
= ==
Fip = FiaHpp

- = =m—le
— Hpq Fpo1 Hop Hpy

=G , G = HxnG +HxpG

=Ty ’ Tp = HpyI'y + Hpplp
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Hip = HipHpp
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A-3



to the requirement that the derivative of every nolse-free measurement
contain an independent white noise component. All subsequent develop-
ments either require this assumption be satisfied, or that a single para-

meter relaxation of this assumption be used (refer to Appendix B).

Euler-Lagrange equations for the filter problem are (e.g., Ref. A-2,
pp. 395-396):

x F —Tqr' X G 0 u
= +
A —H{RT H; = ) 0  HiR4 z,
0
+ (1/e) (2, — Hox)
HRp

These equations may be partitioned more finely and Laplace transformed.

A-k

1 1 4
(sI-F11) 12 A '@ %1
1 4 ?
—Fp1 (s1—Fpp) ToQry Tolp Xp
H' R—1H A —1 ( 1] ]
1187 Hiq HyqRq Hyp sT+Fqq) Foq Aq
1 —'l 1 —_1 1
el1oR1 H11  €HyoRq Hyo 1o e(8I + Fop) Ao
| -
B
w
X20 G2 ° ©
_ 21
- < + r _~1
1 Ry (25 —%5)
1 —
€lop 0 6H12R1 T



The last Fuler-Lagrange equation has been multiplied through by the para-
meter e. If e 1s allowed to approach zero from above, the result is that
Zo = Xp since Ro is diagonal and nonsingular by assumption. Zp = Xp Tre-
places the last Fuler-Lagrange equation.

Let us examine this result from another viewpoint. Assume a solution
for the optimal state estimate, %, of the form (e.g., Ref. A-2, page 396):

~

*1 x P P2 A

N>
1l
]
+

~

]
X Xo P12 Pop Ao

However, in order that the error in a log-likelihood cost function remain
bounded for the noise-free measurements [recall these are weighted by

(1/:5)R'2—1 in that cost function], 2o = Xp = Xp is required. Consider the
assumed solution. Since A7 and Ao are not necessarily zero, P1p and Pop
must be zero because Ppp, the error covariance for the error in the esti-

mate of %o, is zero.

The second Fuler-lagrange equation may be solved for Ao. Making use
of zp = %X, and Ale rzqré, the result is:

A = A[FQ-IX'] - (SI - F?E)ZE + Zop — FQQI"']}\-] + Ggu]

The first and third Euler-Lagrange equations can be rewritten as

(ST —Fqq +T1QrpAFpq) (D10 —TRCHATRA) xq
(H}4R7'Hi1 + F1AFp) (ST + P}y —FhyAToar]) M
(%10 —T1T2AZ20) (Gy ~T1T2AGp) o (Fip+ rqaroalsI—Fppl) u
= 21
1 —1
(210 —F214220) (—F51A62) (H14R7 ) (H{1Ry Hyp + F31A[SI —Fapl) zg

A-5



Specia.lization of the assumed solution for the optimal state estimate
Xy = X + P\
¥ = X2 = 2

was justified previously. This assumed solution may be substituted in
the first and third Euler-Lagrange equations to obtain them in terms of
P, }?1 and A7q.

—1 [
(8T —Fq1 + T QrAAFpq + PIH}R7 Hyp + FA1AFpy])  (T1Qr1 —T1@SATR@] + [F1q —TqQrpAFo 1P

~

x;
-1
+P[Fq —Fp1ATp@ 1] = P[H{ 1Ky Hyq + F31AFpIP
8]
-1 v =1 ’
(H11R7 Hyq +F21AF27) (8I+Fiy —F21ATpQr] — [H14R7 Hyq + F21AFp11P
(%10 —T1 @ pAz00 + P[A 0 —Fa1AZ00]) (F1p + D@ A(BT —Fpp) + PR21A(ST ~Fap)
v =1
~PH11Ey Hi2) | ,
= 2
( 514200) (FAA(SI ~Fon) —H] E'H )
A0 —-F21h220 21 22 1187 Hip
1 1 —1
(Gq —I'Qr3AG, — PP AG,) (PH14R7 )
+ u + Z-I
~
(=F318G5) (H487")

Elimination of the costate-to-state coupling in the above equation results

in an algebraic Riccati equation.
D@7 — DAL + [Frq —T1Q2AF2 1P

-1
+ P[F1q—Fo1Aro 1] — P[H]1R7 Hiq + Fp1AFp(]P = O



in

Assume the Riccati equation is satisfied, and rewrite the ¥, equation in

terms of the filter gain matrices

1
K91

]

[} —
PH{1Rq

and.

ISP (PPq + D@ 2)A

This results in

(sI—Fqq +KqoFpq + K11Hy )%,
= (X10—KqjoZpq) + Ky12q + (F1o + Kyp[ST~Fpp] —Ky1Hyp) 2o + (G —Kq0Gp)u

Occurrence of [5(21——K1222) - (§1O-K12z20)] in the above equation suggests
a more appropriate choice of filter state coordinates is the (n—mp) vec-
tor, ¥.

o

y X1~ K2

Then the differential equation for the estimate becomes:

A A
¥y = (F11—-K1pF—Kq11H11)¥ + ([Fq11 —KqoFp7 ~Kq1Hy11Kq0
+ P12 —KipFop —K11H12)2p + K121 + (G7 —KqoGp)u
¥y(0) = X10-K1p2p0

§1 is obtained from ¥ by means of
;\{1 = §' + K-Iz 22

Figure A-1 shows the structure of the resulting reduced order filter. Re-

call, however, that this solution is in terms of a transformation of the

A-T
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Figure A-1. Optimal Filter-Observer Structure (I‘er.)l"é Full Rank)



state vector for the original problem. Appropriate inverse transforma-
tion must be applied before interfacing this solution with the regulator

portion of the optimal stochastic controller.

Consider the error in the estimate, §. The quantity corresponding to

§ is y where:

o
Yy = X; —KpZp = X — KipXp

The differential equation for y is:
¥ = (Fpq—KoFoq —KqqH )y
+ ([Fq1—Kq1oFpq —Kq1Hq1 1Ko + Fqp —KqoFop) 2o

+ K11H19%xq + (G —KqoGo)u + (' —Kqo0p)Ww

¥(0) = %0~ Kip 220

The differential equation for the error in the estimate, i, is:

P

v y—F = (Fy1-KyoF21 —Ky1H11)¥
= (T —Kyglp)w + Kqqvy
The error in y is also the error in ¥, because

—~ ~

¥ = (%X1-Kqp 2zp) — (xy-Kq2 20) = Xy

Consider the properties of the covariance of X;. The covariance of

i1 is denoted by X. X is the solution of the equation:



1 1 k|
(Fqq —KqpFoq —KqqH11)X + X(F1.—F2q1Kqp —HyKqq)
+ (P —Kqolp) Ty —TpKqp) + KjqRiKj; = O

Necessary and sufficient conditions for a minimum of the trace of X with

respect to Ko and Koo are

o [ —1
K19 = XHqRy

~1
Klo = (XF3q + Tyrs) (Toqrp)

provided Ry and (quré) are positive definite. R and (FgQPé) are always

positive definite here by definition and assumption.

Substitution of K?1 and K?g into the covariance equation results in the
Riccati equation obtained earlier with P replaced by X. This confirms the
optimality of the singular filter solution and shows that P is the covari-

ance for ¥X; and ¥.
Several concluding comments are in order.

The solution given here is a special case of the solution given in
Ref. A-3, pages 327-332. It is a special case in that here we have trans-
formed the state vector at the outset in order to avoid introducing (n-—mg)2
parameters unnecessarily. (Those parameters are in the first (nf-mg) columns

of the T matrix in Ref. A-3, page 329.)

In view of the above, one might ask, '"Why bother with this development
if the results of Ref. A-3 may be specialized?" The answer has several
points:

o The development in Ref. A-3 is a "heuristic" one,

particularly with respect to incorporating the
"free gain matrix, Bq."

o There is no demonstration that the Riccati equation
in Ref. 2 results from the Euler-Lagrange equations
or their equivalent. This is necessary in order that:



The resulting filter be optimal.
The eigenvalue decomposition method of
solution be applicable.

There is a desire to eliminate the unnecessary para-
meters in the Ref. A-3 formulation for the sake of

simplicity.
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APPENDIX B

UH-1H EQUATICNS OF MOTION
AND ACTUATION SYSTEM

The first quantitative step in design is formulation of the equations

of motion in state vector form:

Fx + Gu + Tw

Hx + v

v = HRX

where

bd is the
filter
states

u is the
w is the

Z is the

is the

is the

state vector, composed of shaping
states (xg) and controlled element
(%)

control vector

process noise vector

measurement vector

measurement noise vector

output vector, composed of the

quantities being measured (Hx) and the
other output quantities (yg)

The specific selection of the vector components and their corresponding

equations (kinematic, perturbation, shaping filter and auxiliary) is the

subject of the next two subsections. The longitudinal vehicle dynamics

are given first, then the dynamics of the shaping filters and, finally,

the actuator model.

LONGITUDINAL EQUATIONS OF MOTION

For the longitudinal problem, the vector components indicated in

Table B-1 are used. The equations of motion can be stated in terms of

the variables comprising those vectors.



TABIE B-1. VECTOR COMPONENTS FOR LONGITUDINAL PROBLEM

Computer
Vector Elements Mnemonic . Description
xg ug x012 Iongitudinal gust velocity (ft/sec)
Vg X02 Vertical gust velocity (ft/sec)
he X03 Commanded altitude rate (ft/sec)
Xo n X06 Longitudinal velocity (ft/sec)
w X07 Vertical velocity (ft/sec)
q X08 Pitching velocity (rad/sec)
3 X09 Pitch angle (rad)
Sg X10 Longitudinal cyclic (in.)
B¢ X1 Main rotor collective (in.)
[heat X12 Integral of altitude rate error (ft)
XBAR X13 Horizontal stabilizer bar (ft)
qusedt X14 Integral of airspeed error (ft)P
[xat Xtk Integral of inertial speed error (ft)¢
u g DBD Longitudinal cyclic rate (in./sec)
éc DCD Main rotor collective rate (in./sec)
W Wug PNU Lo§gitudinal gust velocity process
noise (ft/sec)
ng PNW Vertical gust velocity process noise
(ft/sec)
Ve PNC Commanded altitude rate process noise
(ft/sec)
z HD Altitude rate (ft/sec)
Q Pitching velocity (rad/sec)
9 TH Pitch angle (rad)
5B DB Longitudinal cyclic (in.)
5c DC Main rotor collective (in.)
[ he dt HDI Integral of altitude rate error (ft)
he HDE Altitude rate error (ft/sec)
quSedt ASI Integral of airspeed error (ft)b
UpSe ASE Airspeed error (ft/sec)b
fxat XDI Integral of inertial speed error (ft)©€
% XD Inertial speed error (ft/sec)®
ax AXP Longitudinal acceleration independent
of pitch (ay — g sin €) (ft/sec2)d
ay AZP Vertical acceleration measured Z, ft
forward of c.g. (ft/sec?)
Yo a AOA Angle of attack (rad)
X XD Inertial speed (ft/sec)b
s ASE irspeed error (ft/sec)®

e

aState vector mnemonics are automatically generated by software.

d

Pysed in 100 kt case. CUsed in 1 kt (hover) case. Mot used in all cases.



Perturbation Equations of Motlon

These equations are derived in Ref. B-1, with the exception of the xpp

equation, derived in Fig. B-1.

U = (Kylug + (Kydwg + Xpu + Xyw + (Xg—Wo)a

+ (—g cos 60)8 + Xspdp + XsoBc *+ Xop¥pAR

W o= (—zwlug + (—Zy)wg + Zuu + Zw + (Zq+Uo)q

+ (—g sin 80)8 + ZsEdB + Zocd *+ ZOBXBAR

qa = (-Mpug + (—My)wg + Myu + MyW + Mgq

+ MppdB + MpBo + MepXpaR

6 = aq Xpagr = —0.333xppp + 4.97q
______ GEARING
- ~0 ——»= 3, (dey)
Sp LINKAGE SERVO Bi,

- hmae e e ee——— ) eff o)
T e 2T~ f? = By (deql
percent -

 STABILIZER BAR |
4 e - (Fe4
100% Full Travel = 13 in. -48  deg 9 (sec)
I % of Full Travel = 0.13 in. 3s+1 deg/sec
q q 0.16 Big o.13 XBAR
—_— 57.3 S 3
{rad/sec) {deg/sec) | s+0.333 | (deg) 0.24 (in.)

Figure B-1. Pitch Axis Stabilizer Bar (from Ref. B-2)
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Kinematic Equations

These .equations are derived in Ref. B-1.

(] he dt) . he + (—sin 8o)u + (cos 8o)w + (=Vr,)o + (-e)f he dt
(Jupgp dt) = (—cos 6p)ug + (—sin 8o)w + (cos 6o)u
+(ﬁnedw+(—@b%$dt
(Jxat) = (cos gg)u + (sin o)w + (—e)f xdt

The ¢ factors are used to obtain bounded rms integral responses when inte-

gral loops are not yet closed. Otherwise, ¢ = O.
Shaping Filter Equetions

These equations are derived using a simplified version of the model
for random turbulence. Gradient effects associated with the normal turbu-
lence component are neglected. The random turbulence components have
Gaussian probability density functions with zero means. The standard
deviation Oug should be chosen from s Rayleigh probability density func-
tion* having a characteristic speed of ugug ft/sec. However, for the sake
of simplicity, the mean value of Ougs which is Ugug, is used.

Tug ong 2.79 — 0.245 log;q h ft/sec h > 100 ft

2.3 ft/sec h < 100 ft

The standard deviation Owg is a function of Oug: The frequency content

of the random turbulence and Ugug are functions of altitude.

The power spectral densities for the longitudinal and normal random

turbulence components at a given altitude are respectively:

*The Rayleigh probability density function is for Ug-

B-k



) 0121g2VA0 la
€ of + (VAO/Lu)2

a%g2(1 - SOUVp /Ly
o + (1.594Vp,/Iw)°

where

[o0]
o2 1f¢dw
2n
-0

¢Wg is a lower-order approximation to the Dryden power spectral density

such that the mean-square level and half-power frequency are preserved.

The differential equations for unit-white-noise shaping filters pro-
ducing output variables ug and Wg having power spectral densities ng and

Qwg respectively are:

'l.lg = —,VAOI/LuU.g + ng‘\/EIVAOI;Lu Wug
‘:’g = "1-591"|VAol/Ing + GWg\/2<1-59b)IVAol/LW ng

where Wy, and Vg are independent, zero-mean, unit white noises. Vp, is

the trim ailrspeed.

The integral scale lengths I, and Iy are given as functions of alti-
tude h by

Ly = 145[n]'/3 100 £ h £ 1750 £t
= 1510013 = 673 h £ 100 ft
Iy = h h < 1750 ft

B-5



The standard deviation for the normal turbulence component Cwg is related
to the standard deviation for the longitudinal turbulence component Oug

through the integral scale lengths.
UWg = LW;LUI.UU.g

The rate-of-clinb command equation is given by:
(he) = fohe + o, V20h, Why

where Wh, is an independent, zero-mean, unit white noise.

Auxlliery Equetions

These are derived in Ref. B-1.

h = (sin 6p)u + (—cos 6o)w + V0
he = he + (—sin 65)u + (cos o)W + (=vp,)e
Ws, = (—cos 6o)ug + (—sin 8g)wg + (cos 8o)u + (sin 6o)w

x = (cos gp)u + (sin o)W

a.;c = (—Xu)U.g + (—Xw)Wg + qu + XWw + qu
+ (—g cos 80)0 + Xgpdp + X5cdc + Xsp¥paR

ag = —(Zqq = 2xMy)ug — (Zw — 2xMi)vg + (Zu— £xMu)vg
+ (Zg = D)W + (Zq—ﬂqu)q + (ZSB"lxMSB)E’B
+ (Zyo— 4xMo) B¢ + (28 — £xMop)¥RAR

a = (=1 /VTO)Wg + (1/VTO)W

B-6
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Table B-2 presents the longitudihal matrix equations in literal form.
Table B-~3 lists values for the parameters found in the longitudinal state
vector equations, for two key flight conditions. All parameter values
are from Ref. B-2 except those for the shaping filter equations. These

latter were derived above.
ACTUATION SYSTEM

The actuation system has identical dynamics for all four control axes.
A first-order approximstion to the third-order corbination of series and
boost actuators is used. The first-order model includes an approximation
of the series actuator phase lag at low frequencies. Dynamics in the
parallel trim actuator path are neglected. The bases for these approxi-

mations are explained elsewhere in this report.

Tet DX represent the output displacement of any boost actuator (DX = DB,
DC) and DXD represent d4(DX)/dt. The differential equation included in the
plant model for DX is;

DX = IX

Unity gain feedback around the integration element of the actuator model
is provided by the optimal regulator solution. The Qg and Ry cost func-
tion weighting coefficients are selected to obtain each effective actuator
break frequency, wy, which approximates the combination of the series and
boost actuator dynamics. The method for selecting the cost function coef-

ficients to accomplish this is described in Sections IT and IV.

2 -1
wy, = [1/opoostt 2lseries/®series] = 25.73 rad/sec
Opoogt = H0. rad/sec
Aeries = V2 (From Ref. B-3)
Wgeries = T5. rad/sec
B-T
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TABLE B-2. LITERAL MATRICES FOR LONGITUDINAL INPUT DATA

UG WG HDC U W qQ TH DB DC HDI XBR XDI* Asr®
| B
-|Vag | /2u 0 0 | o 0 0 0 o 0 0 0 0 o | w
o -1.594[vagl/lw O | O 0 0 0 o 0 0 o o} o | we
I
0 o o ] O o o 0 o 0 0 0 0 o | ¢
C
Xy Ay 0 I Xu Xw xq—wo -g cos 8o Xgg X5a 0 Xsp 0 0 U
7y —Zy o | =z Tur Zq+Up -8 8in 6, Zgg Zgg O Zgg O o |w
My My 0 | My My Mg 0 Msp My O Mgy O 0 ]9
0 0 o | o 0 1 0 0 0 0 0 0 0 | ™
I
0 0 o | o 2 0 0 0 0 0 0 0 o | pB
0 o o, o 0 o 0 0 0 0 0 ) o | nc
0 0 1. :—sin 8o —CO8 B9 0 =Yg 0 0 -€ o] 0 0 HDI
0 0 0 : 0 0 k.97 0 0 0 0 =333 © 0 | xR
0 0 0 | coss, sine, 0 0 o o o 0 - x |xpI*
—cos 6, —gin 8 0 | cos g sin 6 o 0 ) 0 0 0 x ~-¢ | AsT®
Fg 0
F = Hg = I 8XDI used in hover example;
Cclls  Fe ASI used in 100 kt example

(continued on following page)
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DBED DCD

o o
0 0
0 o

3_};-_5—
o o0
o 0
0 o
. 0
0 1
0 o0
0 0
o ©
0 o0

| WG

HDC

AST®
-

TABIE B-2.
PUG PHG

AR o
0 0
0 0
[¢] 0
0 o]
0 0
o] 0
o} 0
0 o]
0 0
0 0
0

L 0

(Continued)

PHC PU
o} 0
0 0

JE o
0] 1.
0] 0]
[¢] o]
o} 0]
0 [¢]
o] 0
0 0
[0] 0]
o] 4]
0] 0

8¥DI used in hover example; ASI used in 100 kt example.

PQ PTH PDB PDC PHI PXB Px1® Ppsg®

uG
WG

HDC

DB
Pl

HDI

XpI#

AST®

(concluded on following page)
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TABIE B-2. (Concluded)

UG WG  HDC U W Q TH DB DC  HDI  XBR  XDI® AST®
0 0 0 sin g, —cos g 0 v, 0 0 0 0 0 o-l HD
0 0 0 0 o 1.0 0 ) 0 0 0 0 0]aq
) 0 0 ) o 0 1.0 0 0 0 0 0 o
0 0 0 ) 0 0 0 1.0 0 0 0 0 o | oB
0 0 0 ) 0 ) 0 o 1.0 ) 0 0 o | nc
o 0 1.0 -sin 8, cos @, 0 Vv, 0 0 0 0 0 o | mE Fufls By
= Hy =
0 0 0 0 0 0 0 0 0 1.0 0 ) o | 1 FoHy Hy
0 0 0 cos 8o sin 6o 0 0 0 0 0 0 0 o | xoP
Hg = I
0 0 0 ) 0 0 0 0 0 0 0 1.0 0 | xp1®
0 0 0 0 0 0 0 0 0 0 0 o 1.0} asr®
—08 8, —sin 6, O  cos 6 sin 8o 0 0 ) ) 0 0 o o |asP
Xy - 0 Xu Xw Xq -8 cos 8y Xpy X5 0 Xsp o} 0 | axp®
- —( 7 7 V4 Z 7, b2
(7 (7 o M o q 0 °B 8C o B o | azpt
— IxMy) -~ ixMy) = My - My - BxMg = LxMpp — ZxMpg — IxMpp
0 -1/Ng, © 0 1/Vrg 0 0 0 0 [0} o) 0 0 | oA
. -

DI used in hover example; ASI used in 100 kt cruise.
bXD used as measurement in hover, output at 100 kt; ASE used as measurement at 100 kt, output in hover.

CUsed to investigate acceleration measurements in 100 kt case.



TABIE B-3. VALUES FOR LONGITUDINAL EQUATIONS
OF MOTION PARAMETERS

[

100 kt 1 kt Refer-
Parameter (Case 128) (Case 122) ence
Va kt 100.0 1.0
Vpg = Vi, ft/sec 168.78 1.69
Iy £t 1450.0 1450.0
Iy ft 1000.0 1000.0
wp rad/sec 0.1 0.1
o ft/sec 1.0 1.0
Oug 't /sec 2.06 2.06
Owg ft/sec 1.7 1.71
ho ft 1000.0 1000.0 B-2
Wo f't/sec 8.91 0.12
Uo ft/sec 168.54 1.68
g £t /sec? 30.2 32.2
8o deg 3.02 b.ok
Xu 1/sec —0.0451 ~0.0034
Zu 1/sec 0.0888 —0.0991
My 1/sec-ft 0.0050 0.0019
Xw 1/sec 0.0950 0.0250
yel 1/sec -0.9963 —0.3850
My 1/sec~-ft —0.0066 —0.0038
Xq ft/sec 1.7727 0.5797
Zq ft/sec =3.14493 0.2913
My 1/sec ~0.7012 —0.1900
Xsp ft/in. -sec? 0.5568 1.0406
Zsp ft/in. -sec? 5.0738 0.321k
Msp 1/in. -sec? —0.1728 —0.1691
X8e ft/in. -sec? 1.1k02 0.6806
Z8c ft/in.-sec? —-13.127Th4 —9. 7745 \
Mo 1/in. -sec? ~0.0223 ~0.0033 B-2
Lx £t T.30 T-30
h ft 1000.0 1000.0
-e 1/sec —=0 —=0




CONTROL AUTHORITY MODEL

The model for determining control displacement and rate requirements
assumes mechanization in terms of seriés, parallel and boost actuators as
shown below. Mechanization is the same for all control axes. Dymamics
of the series and parallel servos are neglected. This block diagram

enables us to write equations for the series actuator displacement

XS

—KXS + (1 — K/wp) DXD

XS

XS + DXD/wy
and the parallel actuator rate
DXPD = KDXS

where K is the gain in the integral path determined in the course of design.

i o DXS
- Weeries 2 Boost
Stick [gseries ! wseries] Actuator
or Pedal Series -+ - Whoost . wp Qutput
DXS (Wpoost ] (wa) DX
. K wparallet s K Boost
OXPD/K | (OMwparaner) (O) | DXP

Paraiiel
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APPENDIX C
UH-1H, HOVER, EXAMPLE APPLICATION

This appendix presents the highlights of the synthesis and assessment
procedures used in the design of a longitudinal flight control system for
the UH-1H at hover. None of the design iteration steps are included,
only the final results. Also, just a sampling of the assessment data is

presented. The next several paragraphs describe the data which follow.

Table C-1 provides an overview of the primary design goals in this
synthesis. They involve identifying the flight condition and the corre-
sponding functions to be performed by the FCS, which in turn specify the
bandwidths. The actuator bandwidths were computed using an approximation

to the actual UH-1H hardware actuators (see Appendix B).

Tables C-2 and C-3 list the matrices used to define the problem. The
shaping filter and controlled element equations are provided in Table C-2,

while the measurement and output equations can be found in Table C-3.

Teble C-4 contains the elements of the final filter-observer synthe-

sis, discussed previously in Section IV (see Table 16).

‘Table C-5 begins the regulator synthesis portion of this example with
a list of the relevant controlled element transfer functions. Figure C-1
presents an example of the portion of the regulator synthesis procedure
that is concerned with making approximations to the transfer functions,
computing the assoclated cost function weightings for each surrogate con-
trol, and choosing the most effective control point by selecting the
smallest cost function weighting. The @ closure is computed here, using
cyclic and collective as the candidate control points. Notice that for
the TH/DB transfer function both the asymptotic and actual Bode plots are
used in computing K and n. Compared to the cost function weighting when
collectivE is used as the control point there is little difference between
the asymptote and the actual transfer function approximations. Based on
the cost function weightings, longitudinal cyclic is chosen as the most

effective 6 control point.



As was mentioned in Section IV, 1t is often possible in a particular
application to predict the effect of various closures on subsequent
closed-loop transfer functions and thereby eliminate the iterative sec-
tion of the regulator synthesis by effectively closing all of the loops
simultaneously. This was possible for the example at hand. Table C-6
presents the design of the regulator by indicating the process of choos-
ing the most effective control point at each step. Notlce that the cost
function weighting on collective rate, RDCD’ is an order of magnitude
larger than the cost function weighting on cyeclic rate, Rpgp. This
reflects the results of the 100 kt design study wherein collective acti-
vity was judged to be too severe when the cost function weightings on the

actuator rates were equal (see Section IV).
Table C-7 presents the final regulator design for this example.

Once the filter-observer and regulator syntheses are complete, all
that remains in the optimal controller design is to compute the controller
coefficient matrices, shown in Table C-8, and the controller transfer func-

tions, shown in Table C-9.

The design assessment begins in Fig. C-2 with closed-loop transfer
functions and transient responses to step inputs of Ug, Wg, and ﬁc. This
provides information on the gust suppression characteristics of the design,

a8 well as the response to command inputs.

Next we examine Bode plots of various closed-loop transfer functions
to see if the design goals were attained. Figure C-3 shows the rate-of-
clinb response to rate-of-climb command; the —45 deg phase angle falls
at approximately 1.2 rad/sec. Figure C-L4 presents the error response for

the same varisble — the —3 dB point is at 1.0 rad/sec.

Figure C-5 is a Bode plot for the approximation of the e/ec transfer
function with all loops closed. Figures C-6 and C-7 plot the propor-
tional plus integral and proportional plus integral error transfer func-
tions, respectively, for the groundspeed loop. Again we see a close

agreement between the design goals and the actual design.

The final steps presented here for assessing the design via classi-

cal control metrics make use of the Iy matrix (see Fig. 6) to compute

c-2



various open-loop transfer functions. These open-loop transfer functions
provide a means for determining the effect of the outer-loop closures on

the inner-loop bandwidths.

Figure C-8 is a plot of the rate-of-climb proportional-plus-integral
transfer function with the proportional and integral loops opened. The
crossover frequency is about 1.2 rad/sec. Figure C-9 examines the rate-
of-climb integral bandwidth by plotting the HDI/VHI transfer function
with the HDI loop opened. Figures C-10 and C-11 show similar plots for
the proportional-plus-integral groundspeed loops. Figure C-12 plots a
more inner loop, the 6 loop, with the §, %, and [xdt loops opened. Here

we see a crossover frequency of approximately 2.3 rad/sec.

Finally, an assessment of this FCS design based on statistical met-
rics is presented in Table C-10. The process noise augmentation has been
removed here. We can compare the rms response of the plant states and
filter states to the combined process and measurement noise with any
secondary design goals specified at the outset. We also have at hand
the rms response of the outputs and controls, which enables us to compute
measures of control activity such as the positive-going zero crossing rate,

also shown in the table.

This appendix has presented just a sample of the design synthesis and
assessment tools available. Increased familiarity with the design pro-
cess will enable a designer to feel comfortable with this method and the

resulting data analysis.

c-3



TABIE C-1

EXAMPLE APPLICATION

UH-1H Longitudinal Flight Control System
Flight Condition: Hover

Functions:
Rate-of-climb command
Groundspeed hold

Bandwidths: ' (rad/sec)
Cyclic (DB): 25.73
Collective (DC): 25.73
Pitch (TH): 2.0
Rate-of-climb error (HDI): 1.0
Integral of HDE (HDI): 0.82
Groundspeed error (XD): 0.5
Integral of XD (XDI): 0.1

c-k



TABIE C-2. PLANT; CONTROLLED EIEMENT AND SHAPING FILTERS

-0

0o b v e s e G b=t b s G e h b b S SE e e b e b b b S b b S b e G b o et b

X = Fs +Cu+TI'w , x(0) = x4
~
% o e
roog § S & Y BN 1
o o p
& 4 A N S ¥ & F LY T
y N oy o) LN oy W I ST Sl D ASEe &
v o 2’ ¢ o Yy Y & & o, Ny o Yeo& ., Y.,
§ S8 o P Ey S FY 5T o Fp I
o) o S <
SE KL 2 SEFTE QIO FE TN LE TP
1
x* = {ve we HC !U W @ T DB DC HDI XBR XDI }
|
F MATRIX
1 2 3 4 5 6 7 8 9 14 1 12
X2l X902 Xe3 Xa6 X027 Xo8 X99 X1lo X11 X12 X13 X14
| 11
-3.117E-82 9,208 3.008 2.988 3,802 g.9000 8.0080 e.000 9.000 J.008 g.00¢8 8.000 1 X8l
!
12
9.289 -2.269E-82 9.9090 3.009 2.889 ¢.909 ?.0008 9.000 9.200 0.9000 a.009 @.000 1 X82
!
: ST
9,209 g.020 -2.189 3.002 9.9092 é.0900 g.008 0.90080 0.002 ¢.008 6.0062 d.082 1 X8B3
—l
1 4
0.34DE-22 -0.250E-81 0,008 -3.340E-22 2.250E-81 0.460 -32.1 1.04 8. 681 9. 880 1.84 8.000 1 X06
H
15
9.991E-81 @.385 ¢.008 -6.991E-B1 -2, 385 1.97 -2.27 2.321 —9.77 a.008 8.321 g.008 1 x87
!
16
-92.198E-92 ©.389E-02 9.0288 9.198E-22 -3.380E-32 -3,192 2.009 -9.169 -6.330E~02 @,0060 -8.169 2.080 1 Xd8
!
v 7
9.990 @.002 d.003 d.0898 3.990 1.2 6,088 3.900 3.0689 0.008 #.082 0.090 1 X#9
!
18
9,900 J. 809 @.008 0.008 3.002 é.4d92 9.0008 2,008 9.900¢0 3.000 9,999 9.200 ! X1e@
1
19
¢.0890 d.939 d9.00¢d 3,009 9,893 g.8082 g.008 d.800 3.200 0.080 ¢.800 a,0808 1 X11
!
1 18
2.088 9.003 1.89 -d.705E-81 2.998 2.9020 -1.69 ?2.008 a.002 ¢.008 2.2008 2.000 1 X12
1
) 111
8.9209 2.0988 3.088 2.9088 3.229 4,97 ¢.909 9.000 5.000 ¢.000 -8,333 g,.000 1 X13
]
112
9.0049 B.008 3.06902d 0.998 2.705E-91 B.929 2.0990 2.A908 3,008 6.0960 ¢.000 2.200 1t X14
]

(continued on following page)
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TABIE C-2.

G MATRIX
1
DBD

U.0828

0.002

6.000

p.000

B.009

0.200

2.999

1.008

2.099

0.908

0.009

2.000

(Continued)
'4\/0
& & &
& R
: e
o
& T
VY Yo
DBD DCD
2
DeD
IR
0.200 ! X0l
!
12
8.098 ! X82
]
13
0.206 ! X03
!
14
5.088 ! X6
'
-
3,800 1 X07
]
16
8.000 1 X8
!
r7
2.800 ! X089
1
I
3.080 ! X190
!
19
1.06 1t X1l
(]
1o1e
2.090 1 X12
!
Y
2.000 ! X13
[}
112
2.290 1 X14
'

(concluded on following page
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TABIE C-2. (Concluded)
GAMMA MATRIX

1 3 I 4 5 6 7 8 9 10 11
PUG PWG PHC PU PW PQ PTH PDB PDC PHD PXB
P.483E-81 ©o.0892 9.000 | 2.929 g.288 2.0090 2,329 2.ed4d d.008 d.089 d.9439
8.200 3.734E-81 9.0080 I 2.0299 g.000 d.089¢ ¢.080 2.920 d. 380 3.899 J.098

|

0.020@ 0.200 v.447 B,9008 2.008 0.028 9.000 2.0800 B.029 9.e00 0.08¢
¢.0008 2.909 9.0980 I 1.08 .90 2.0008 0.008 2.880 2.0008 0.089 0.029
2.0900 0.840 B3.000 | 2.999 1.90 0.9008 B.808 2.000 2.00¢ 9.899 g.009
0.008 a3.90a 3,009 l 3.200 0.998 1,09 2.90080 2.8990 .2089 J.9990 B.030
2.240 2.8900 2,989 | 2.008 0.989 g.90093 1.00 8.000 #.p809 0.8900 0. 088
0.000 2.200 2.0080 , 2.06098 2.209 J.008 2.009 1.20 3.009 0.000 0.009
d9.009 ?.008 9.9000 | 0.902 d.009 d.029 0.008 2.02e¢ 1.00 9.009 2.000
9.000 2.882 0.090 ' 9.0090 9.009 3,090 0.009 0.8990 0.009 1,398 g.0909
¢.099 0.098 8.008 \ 0.008 9.06098 3.089 v.9289 23,009 9.602 0.888 1.98
.80 d.999 J.989 ~ J.999 7.909 J.0899 9.039 v.809 2.890 6.080 .09

12
PXD

a.00@

2.098

0.009

2,080

2.000

¢.009

8.006¢

8.4300

9.0

0.008

B = b b G B he G B g G b S b S em S B G e A ew e b G T S m g G e b b b e g

Xdl

X2

X83

XP26

X987

xe8

X089

X190

X1l

10
X12

11
X13

12
X14
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S b G b b B b fm e bm s b m G G b S Sm Y b b e b b s b 0 b e b b e

= H X H
R - - -
Hy
= Hx+v
@ 3
Xy . 4 £,
% & v & & o1y
o §F Lo L £

¢ & I G o8 & P

A S A T A

%o = < L4 o 4? c? < N
z' = {HD Q@ TH DB DC HDE HDI
HR MATRIX

1 2 3 4 5 ] 7 8 9
Xl Xp2 X33 X096 Xo7 Xo8 X99 Xle X11
0,008 0,802 0.000 { 9.785E-81 -0.998 2.009 1.69 2.008 2,008
2.000 0.800 0.833 l 2.2990 3,000 1.0¢ 0.000 2.¢09 6.000
0.9009 2,000 0.000 l 0.038 0.000 2.098 1,00 g.008@ 0. 800
2.200 0.000 0.829 | 8.9098 2.909 d.00¢ 2.0¢0 1.00 0.009
0.000 2.008d 2.0089 I 2.0029 ?.000 2.080 ¢.009 ¢.0800 1.80
2,080 0.2800 1.090 | -3.785E-21 9.998 3.000 -1.69 0.900 2.000
8.008 0.008 2,008 I 0.0008 0.60a9 0.000 0.0890 0.000 ¢.000
g.082 0,009 0.000 I ¥.998 28.705E-21 @.409 2.089 0.299 0.000
¢.000 0.008 @.0089 l 0.0803 a.0049 g.0028 8,200 0.062 ¢.089¢
6.2820 ~8.592 ¢.009 | 8.800 B.592 .00 ¢.088 6.208 2,032
-2.998 -8.785e-81 @.009 | 0.998 8.785E-91 92.909 6.2909 ég.000 0.008

PIANT; OUTPUT AND MEASUREMENT EQUATIONS

&
5 @:?Q
oy .
& & @” &
o (”é’oc:
& N
XDI }
19 11
X12 X13
g.9000 2.000
2,008 8.800
d.000 g.800
0.9090 3.9090
8.9008 2.698
2.029 0.0008
l1.08 g.800
8.08¢ 3.080
3.899 2,088
9.000 9.000
0.200 0.099

12
X14

2.0988

3,000

9.000

d.008

0.009

2.008

A.000

l.00

2.299

0.0890

oo e tm hh e YE fn b b b e S em b S e b S Gem 0 Gm b v MR b G e e b e G Se

x
S

T W N

S

3]e}

HDE

HDI

XD

XDI

18
ADA

11
ASE
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TABIE C-4. FILTER-OBSERVER SYNTHESIS

F bt b S b G e b b s G At G Ve =t Gme Am tms A G G S b G b G b b b b s 4 G S S

Q MATRIX DIAGONAL, FILTER RMS STATE EST ERROR, FILTER
1 1
(RS | ! [ |
4.24 1 PUG 19,173 1 X01
! ] !
12 ! 12
2.92 1 PWG ! @.541E-91) Xe@2
1 R MATRIX DIAGONAL, FILTER ! !
t 3 1 ! 13
1.69 1 PHC 1 8,008 1 Xe3
! - - ! !
1 4 ! (B} ! [
9.108E-34! P U ' 8.009 ! HD [T Y ] 1 XB6
! ! ! 1 !
1 5 1 12 ! 15
2.180E-04) P W 1 @.e82 t Q ! 2.809 1 X987
! ! ! ! !
1 6 ' v 3 [ 1 6
0.180E-341 P Q t 9.008 ! TH ! 8.d00 1 X928
] ! ! ! !
r 7 ! [ ! 17
9.108E-85! PTH 1 @.8008 ! DB ! 2,020 1 Xd9
! 1 ! CLOSED LOOP EIGENVALUES, FILTER ! !
1 8 ! ! 5 1 ! 1 8
8.189E-24! PDB !t B.000 1 DC ! B.9028 1 X16
! ! ! - - 1 !
! 9 ! ! 6 1 1 ! ! 9
9.180E-241 PDC 1 0,029 ! HDE ' 9.333 t 1 ! 8.088 1 X11
! ! ! 1t 188, ! E13 ! !
1 1e ! ! 7 1 1 [} 1 1@
3.129E-241 PHD ! 8.028 ! HDI ! ! ' 8.0899 1 X12
! ! ! t 15.6 o2 ! !
11l ! t 8 1184, 1 EBL 1 1 11
9.002 1 PXB 1 8.908 1 XD ! ] ' 9.9000 1 X13
! ! ' ] ' ! [
112 ! r9 1 9.315 t 3 1 t 12
0.10¢E-341 PXD 1 2.008 ! XDI ' 188, | E@2 ! @.000 1 X14
' 1 ! ! ! ! 1
K12 GAIN MATRIX, FILTER
1 2 3 4 5 6 7 8 9
HD Q TH DB DC HDE HDI XD XDI
f 11
! ©.941E-88 -0,679E-29 -#.159E-87 2.829 8.080 -3.286E-16 ©.800 2.195E-08 9.022 ! E13
! !
' 12
1 -6.87 -8,57 19.3 6. 802 0,080 0.184£-27  ©.600 29.5 8.208 5 EQ1
! !
! 13
t -38.9 2,54 65.8 2.0e0 8.080 #.118E-86  2.928 -7.16 ¢.009 ! EB2
1 !



TABIE C-5. CONTROLIED EIEMENT TRANSFER FUNCTIONS

CASE: UH1H HOVER 122LONG 31-JAN-79 CONTROLLED ELEMENT TF'S
DENOMINATOR:

1.2030

( -93209 Yy ( .o08080 )y ( .00008@ ) ( .282092 )
( .38494 )

(( 18339 s 18934 , -19576E-81, .18833 ))
(( .26279 s 492717 ¢ «+24365 , +89459 ))
< .118863E-81>

NUMERATOR: TH/DBD

~-.16918
( .62202 Y. ( .e2009 Yy ( .882082 ) (-.79865E-82)
( .3330¢ ) ( .39184 )

< .17445E-23>

NUMERATOR: TH/DCD
-.33080E-02
( .20800 )y ( .88929 Yy ( .09088 ) ( .18854E-081)
( .33300 )y (~11.278 )

< .13442E-93>

NUMERATOR: HDE/DBD

.24729

( .08208 ) ( .e89v9 ) ( .2000298 )y ( .33382 )
(-1.4789 )

({ .35965 , 1l.3542 , -48735 , 1.2636 - ))
<-.22334 >

NUMERATOR: HDE/DCD

-9.7980

( .89002 ) ( .88000 ) ( .068d89 )

(( .18545 , -14356 . -26623E-01, .141@7 })
(( .257692 , -93218 ;s -24811 , 980864 ))
<~-.17544 >

NUMERATOR: HDI/DCD

-9.,7988@

( .29980 ) ( .8820¢2 )

(( .18545 s +14356 , «26623E-01, .141@7 ))
(( .25769 , -93212 s +24011 , 90064 })
<-.17544 >

NUMERATOR: XD/DBD

1.06086
( .60800 Yy ( .e2p89 )y ( .28e00 ) ( .33399 }
( .38296 )
(( .19712E-P81, 2.2663 , .44674E-01, 2.2659 })
< .69473 >

NUMERATOR: XDI/DBD

1.86@6

( .00028 y ( .90209 ) ( .33389 ) ( .38296 )
(( .19712E-91, 2.2663 s, «-44674E-81, 2.2659 ))
< .69473 >
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Figure C-1. {Concluded)
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TABLE C-6. SUMMARY OF Qg AND Rg SELECTION

Rpgp = 1.0 Rpgp = 10-0

Lo
Tongitudinal  25.7 DB| _ 1 K=1.0 DB,
Cyelic DBD{ =~ & _ 2 = 662.34 peo| T
Actuator ©e n=0 DB "‘“C
Main Rotor 25.7 DC_ _ ol _ 1 K=1.0
Collective DBD DCD|,. s neo Gpc = 6623.%
Actuator -
Pitch 2.0 ]_f_)r_g i .159 K = 0,169 RS % - .03272 K = 0.0372 Qg = 19, 604,
Attitude w 8 n=1 g = 1,402, w 8 n=1 68,000
Rate-of- 1.0 HOR[ _ .1866 K = 0.1866 _ HE! _ —9.798 K =-9.798
Climb Ervor, DB| T "8 n=o0 Ypg = 19022.0 DC| T T8 . Qg = 69.0
Proportional - e -
Rate-of- 0.82 iy _ 1 K=1.0
Climb Ervor, HDE| ~ '8 _ Qgpt = 46.6
Integral e =0
Groundspeed 0.5 x_n’ _=32.2 K= -De2 x| 5
Error, TH{ &8 _ G = 357.33 HDE -
Proportional %e n=0 B0 Qe
Groundspeed 0.1  ¥pI _ 1 K=1.0
Error, XD T8 _ pI = 3.57
Integral e n=20 &




L=D

Q MATRIX DIAGONAL, REGULATOR CLOSED LOOP EIGENVALUES, REGULATOR
1 1

H t 1 1 !
| 3.220 ! HD v 25,7 ! 1
! ! ! 189, ! X4l
! t 2 1 !
1 3,009 tQ 1 !
! ! ! 25.7 ! 2
1 3 1 182, 1 X902 TABIE C-T7. REGULATOR SYNTHESIS
! B.148E+87! TH ] 1
! ! ! !
! 14 v 2,77 t 3
! 662. ! DB 1 =132, 1 X93
! i ¥ !
! t 5 ! !
! 3.662E+941 DC V2,77 v4
t ! 1132, 1 X026
! ! 6 ! !
! 69.2 ! HDE 1 1
! ! t 8.997 ! 5
! 1 7 1 =157, t Xe7
t 46.6 1 HDI ! t
! ! ! !
H ! 8 ! 8.987 ! 6
1 357. { XD H 157. 1 X28
! ! ! !
! to9 ! !
] 3.57 1 XDI 1 2,585 ! 7
1 ! ! 18d. ! X89
t Y] H !
[N 1] ' AOA 1 '
! ! 1 3.182 ! 8
1 1 11 ! 1898. ! Xlg
v B.082 ! ASE 1 '
! f ! 1
- - t 9.336 ! 9
! 189. 1 X111
! H
R MATRIX DIAGONAL, REGULATOR ' !
1 ! B8.117e-92! 1@
1 189. 1 X12
- - ! 1
1 ! 1 ! !
t 1.09 ! DBD 1 $3.269E-22! 11
' ! 1182, 1 X13
! t2 ! !
! 18.9 ! DCD ! !
1 1 1 3.189 12
- - ! 189. 1 X14
! !
REGULATOR GAIN MATRIX
1 2 3 4 5 6 7 8 9 19 11 12
X0l X02 X063 X236 Xa7 X28 X29 X192 X1l X12 X13 X14
1 1
9.254 8.523 8.717 22.8 1.98 -537. ~0.152E+34  29.9 ~3.518E-21 9.252 28.9 1.89 t DBD
1

! 2
-9.264 -1.87 -4,16 2.819 -3.37 -3.846 -9.936 ~-9.517E-02 27.48 -2.16 -9.122 9.221E-41f DCD

!



GL-0

AF MATRIX
1 2
E13 E@)
-9.333 2.906E~09
-34.3 -5.922
-1.62 -3.76
BF MATRIX
1 2
HD Q

-9.146E-06 4.97

95.6 -29.1
592, -76.5
CF MATRIX
1 2
E13 EQl
-28.9 -3.254
3.122 3.264
DF MATRIX
1 2
HD Q
21.5 538.

~42.5 1,38

TABIE C-8.

CONTROLIER COEFFICIENT MATRICES

3
£02
_! 1 i
9.363E-28! E13 y
]
T2
-2,37 ! Edl
1
v 3 u
-15.¢ 1 EB2
!
3 4 5 6 7
TH DB DC HDE HDI
A.310E~36 3,142E-99 -3.922E-87 B.452E-15 @.980
788. -34,3 59,7 -3.295E-86 p.000
-8.123E+84 -1.60 381. -3.183E~85 @.@80
3
EA2
1l
-3.523 ! DBD
]
2
1.87 { pcb
!
3 4 5 6 7
T™H DB bc HDE HDI
2.149E+04 -29.9 §.518E-31 -3.717 -8,252
79.8 3.517E-92 =-27.8 4.16 2,16

”~
Apy + Bpz
A
CFy + DFz
8 9
XD XDI
~3.104E-28 ¢@.000
-9.13 0,209
1.36 9,999
8 9
XD XDI
-26.6 -1.89
-0.436

El3

EQl

Ed2

1
DBD

2

-3.221E~91! DCD



TABIE C-9.

CASE:
DENOM INATOR:
1.0920 .
( .315087 ) ( .33320
< 1.6383 >
NUMERATOR: DBD/ HD
21,541
( 11149 )  .31682
< .25317 >
NUMERATOR: DBD/ Q
538.16
( 15.694
({ .79748 s +24429
< 583.67 >
NUMERATOR: DBD/ TH
1485.9
( .24418 ) ( .333928
< 1921.3 >
NUMERATOR: DBD/ DB
-29.879
{( .18186 Yy ( .33322
<-27,917 >
NUMERATOR: DBD/ DC
.51781E-021
( .29977 y { .33302
<-21.332 >
NUMERATOR: DBD/HDE
-.71659
{ .315¢7 Yy ( .33343
<-1.1741 >
NUMERATOR: DBD/HDI
-.25178
{ .31587 ) ( .333a92
<-.41249 >
NUMERATOR: D8D/ XD
-26,641
( .27441 ) ( .333929
<-37.964 >
NUMERATOR: DBD/XDI
-1.8892
( 31537 Y  ( .33399
<=3.0959 >

) ( 15.614
)y ( .33329
.1947s .
) (15,988
) ( 15.428
) (=4127.1
) (15.614
}  ( 15.614
) ( 15.595
) ( 15.614

.14734

UH1H HOVER 122LONG 2-FEB-79 CONTROLLER TRANSFER FUNCTIONS

NUMERATOR DCD/ HD
-42.506
( .11589 y ( .31509 )
<-.51872 >
NUMERATOR: DCD/ Q
1.30219
(~.28891€E-21) ( 1.2724 )
1) < 2.5324 >
NUMERATOR: DCD/ TH
79.797
( .33322 ) (-.45581 )
<-39,165 >
FLOATING UNDERFLOW PC=336835
NUMERATOR: DCD/ DB
.51744E~82
(~.11656 y { .33398 )
< .41471 >
FLOATING UNDERFLOW PC=036a35
NUMERATOR: DCD/ DC
-27.9008
(-.94888E-9d1) ( .33309a )
< .28821 >
NUMERATOR: DCD/HDE
4.157¢2
( .31587 ) ( .33309 )
< 6.8103 >
NUMERATOR: DCD/HDI
2.1563
( .31527 ) ( .333989 )
< 3.5326 >
NUMERATOR: DCD/ XD
-.43622
( .15239 ) ( .33369 )
<~.39283 >
NUMERATOR: DCD/XDI
-.22059E-91
( .31587 ) ( .33300 )

CONTROLLER TRANSFER FUNCTIONS

<~.36139E-01>

( .33399

(-53.279

( 2.4995

(~2254.8

( .33773

( 15.614

( 15.614

(17.982

{ 15.614



Longitudinal Gust Transfer Functions

CASES
FLONTIMG UNDERFL.OW

DENOMINATOR?

1,0000

«10195 b
50520 )
2922313 ’
+467380 ’

118,79 >

¢
¢
(44
o

HUMERATOR § HO/
NEW FILE

-.938513E-01

¢ .00000 )
< .43797 )
€ 50809 .
(¢ 894589 '

Z=713828E-022

MUMERATOR? DE/
NEW FILE

-3.4937
¢ 10140 )
¢ 3.7979 )
(¢ 24433
o .892838
<=1,357%

~

HUNMERATOR TH/
NEW FILE

+192000E-02

¢ .89117€-001)
¢ 23.724 )
¢ ,503519 ’
(( 22523 ’

LET7RTAE-DD

MUMERATOR S xus
NEW FILE

«10373E-01

¢ .000N00 )

¢ 6.8075 )

£ 72595 ’

(1~-,13977 »
SSP972E-01

FIJMERATOR S ucs
JEW FILE

<2204 b
neys
EEE ¥ad ’
1.15183 :

UHIH HOVER 122L0NG 31-JAN-79 ALL LOOPS CLOSED

PC=0340335
¢ 31507 b ¢ ,33300° ) ¢ 33595 b
€ 15,514 ) ( 25.714 > ¢ 285.728 )
« 70723 y 83748 r .34882 »
2.7741 » 1.8692 » 2.0498 )
UG FILE NAME? HDUG.Z2CL
¢ 10125 ) ¢ 32803 ) ¢ 33300 )
« 25.728 ) ¢ 12.847 )
+A0S2CE-Q1y ,24440E-01, ,321867E-01))
22,7215 r 1.8946 s 1,7518 »
uG FILE NAME? D[BUG.2CL
¢ .33300 ) ¢ 47451 ) ¢ 2.3403 )
¢ 25.7249 >
+ 29608 » .28552 r .78370E-01))
«P0773 y .B1564 v 237834 )
uG FILE NAME? THUG.2CL
¢ .33300 ). ¢ .33300 ) ¢« 7.5257 )
¢ 38.1350 Y
.24530 y 12442 r .21256 »
« 37864 r 83146 v L 31076 )
us FILE MNAME? XDUG,2CL
¢ .24729E-02) ¢ 33300 ) ( 33300 )
25,724 ) C 372.714 )
«?1330 y 25444 r «3239G »
1.8327 r=434779 y 1.7994 )
uG FILE HAME? 0CUG.2CL
4 ,32513 ) 4 233200 ) { .34094 M
L 25.726
«J4309 v L 73710 » 3255149 )
23,7455 v 1,8857 r 2.0004 M
Figure C-2.

Transient Response to -10.0 ft/sec ug Step Input
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Normal Gust Transfer Functions

CASE:
ATING UNDERFLOW

INOMINATORS

1.0000

¢ . 10195 )
{ .50520 )
(¢ 72313 ’
(¢ .57380 L]
7 118.79 >

ATING UNDERFLOW

JHMERATOR: HO/
NEW FILE
-.38580
¢ .00000 )
¢ 33200 )
{ 12.790 )
(¢ 463102 ’

- 9639BE-01>

UMERNTOR? DR/
NEW FILE
=6.,4001
¢ .10211 )
(( .99749 v
(¢ 95594 v
¢ ,90318 y
12,5732 >
IUMERNTOR S TH/
NEW FILE
+3200CE-02
¢ .10290 )
(¢ .79903 ’
(¢ ,92188 ’
(¢ .77974 1

«P1502E-01>

NUMERATOR ¢ Xns

MEW FILE

. 21957E-02

¢ .00000 b
( 335448 )
( 81,908 )
(¢ 90770 3
+ +34358 >
NUMERATOR? ncs
NEW FILE
2.007
¢ ,10188 )
¢ .51001 >
(¢ ,21195 v
({ 67047 ’
< 4.73464

UH1H HOVER

122LONG 31-JAN-79 ALL LODOPS CLOEED

FC=0340337
¢ 31507 ) ( .33300 Yy ( .33595
(¢ 15.514 ) C 25.718 Y (25,728
90723 » .83748 » 34882 1)
2.7741 sy 1.8592 s 2,0498 ))
FC=035035
WG FILE NAME?T HDWG.Z2CL
{ ,15158E-01) ( ,10198 ) ,32014
¢ .33892 ) ( .31520 ) ( 28.726
2.8085 r 1.7722 y 2.1787 )
WG FILE NAME? ['BWG.2CL
¢ 33300 ) (=6.7123 ) C 25.726
33076 » 33013 v «23482E-01))
72377 s 69182 r 21270 )
1.,0757 » 97155 v 46175 ))
wG FILE NAME? THUWG.2CL
¢ .33300 ) ( ,33300 ) (25,728
» 34557 » 34351 » »37710E-01))
91517 y oBA3SLT y » 39450 )
28.539 y 22.302 y 17.966 )
0] FILE NAME? XDWG,2CL
( .14808E-01) ( ,27605 > ¢ 33300
{=7.0033 ) ¢ 25.724 ) (-28,403
«?0729 » .B23355 r 33073 )
WG FILE NAME? [ICWG.2CL
¢ 231464 ) 33300 ) ¢ .33570
( 23.726 )
«84%47 s 774643 » 34955 )
2.7835 + 1.8663 r 2.0647 )

Figure C-2.

Transient Response fo -1.0 ft/sec wg Step input
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Rate -of - Climb Command Tronsfer Functions

CASE:! UHLIH HOVER 12DLONG 31-JAN-79 ALL LOOPS CLOSED
DENOMINATOR:
1.0000 N
¢ 110195 ) ( 31507 ) ( 33300 ) 33595
¢ .50520 ) ¢ 15.414 ) ( 25,716 ) ¢ 25,726
¢¢ .92313 5 .90723  , 83748+ .34882 1)
(¢ .67380 s 2.7741 ; 1.8692 5 2.0498 )
< 118.79 >
NUMERATOR:  HD/HDC  FILE NAME? HIDHDC.2CL
NEW FILE
10,708
¢ .10195 ) € 31507 ) ( .33300 ) ( .33601
¢ 250240 ) ¢ .52197 ) ¢ 15.414 ) { 25.724
(¢ .67251 y 2.7694 5 1.8425 4 2,0496 )
2 118.79 >
NUMERATOR:  DE/HDC  FILE NAMET DEHDC.2CL
NEW FILE
-.71669
¢ .10135 Y ¢ .31506 ) ¢ .33300 ) ( .39446
(~2,2043 5 ¢ 15.515 ) ( 25.741 )
(¢ .73877  , .49333 4 47290+ 414017 )
(¢ .73782  , 2.0271 v 1.4956  » 1,3483 "

< 2,4625

N4

S

MUHERATOR S TH/HDC FILE NAMET THHUC,.2CL

NEW FILE XOROC, 2CL

~.71391E-03

¢ 313506 Yy ¢ 33300 ) ¢ .33300 Y (37296
¢ .58193 v 10137 y +IBYPIE-01r ,82440E-01))
«t .89789 r 6.7191 s 6.2125 r 3.0459 3)
(¢ 79988 v 14.332 v 16.330 v 25708 )
“=.12207E-0

NUHMERATOR? XD/HOC FILE NAME? XDOHDC,2CL

NEW FILE
-.80053
¢ ,D0000 ) ¢ .31503 Yy ,31958 ) ¢ .33300
« ,38773 ) (=.,57722 ) ( 15.614 . ) ( 25.741
(¢ 58773 ¢+ 1.7890 v 1,0514 r 1.4474 )
s 7.7271 el

HUMEFRATOR nC/HOC FILE NAME? DCHOC.2CL
NEW FILE

4,1570

¢ ,10235 Y 31507 ) ¢ .23300 y  C .33484
« ,38238 ) ¢ ,47218 Y ( .55313 > ¢ 15,614
( 25,726 )

{t .&47330 » 2.7743 + 1.8480 r 2,03513 )
< A.6420 >

Figure C-2.

Transient Re'sponse to 1.0 f1/sec f\c Step Input
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CASE:

DENQMINATOR?

1.,0000
t .10195
{ .50520
(¢ .92313
¢ ,67390
< 118,79

NUMERATOR:
NEW FILE

40.908

€ ,10193
* .50240
(( 47251
~ 118.79

S

UH1H HOVER

HO/HDC

C 31307 ) ¢ .33300 >
¢ 15.514 )y ( 25.716 LS
90723 v 83748 »r 34882 2
2.7741 v 1.8592 v 2,04%8 »
FILE NAME? HIHDC.2CL
¢ .I1507 )  .33300 Yy «
¢ .32197 ) ¢ 15,614 Y <
2.7594 r 1.852% v 2.0494 ))

41.0(s + .522)

ALL LOCOPS CLOSED

33595

I5.728

«33601
25.726

hie

(s+25.7)[8% +2(.923)(.91)s + (.91)2]

Figure C-3. C(Closed-Loop Frequency Response: ﬁ/ﬁc
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CASE: UH1H HOVER 122L0ONG 31~JAN-79 ALL LOOFS CLOSED
DENDMINATOR:
1.0000
( .10195 ) ¢ 31507 ) ¢ .33300 ? ¢ 33395 )
( .50520 ) ¢ 15,811 ) ( 25.716 ) ¢ 25,728 )
C 92313 v .90722 v 83748 v 24882 )
(¢ ,47330 vy 2.7741 v 1,8692 s 2.0498 )
< 118,79 ™
NUMERATOR: HDE/HLC FILE NAME? HDEHDC,2CL
oLl FILE
1.0000
¢ 00000 ) ¢ +10199 ) { 11459 b ¢ 31507 )
{ 33300 ) ¢ .33975 ) ¢ .503548 )  15.514 ]
{ 25,724 ) ¢ 27.282 )
(¢ 467297 v 2.7736 v 1.9443 » 2.,0518 b
< 17.347 >
h
Y s(s+ .115)
: 2
e [s2+2(.923)(.91)s + (.91)2]
Figure C=k. Closed-Loop Frequency Response: he/hc
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" Amplitude (dB)

Phase (deg)

-200

CASE: UH1H HOVER 122L0NG 31-JAN-79 ALL LOOFS CLOSELD

DENOMINATOR?
1.0000
( .10195 ) ¢ .31507 ) ¢ ,33300 Y C .33595 )
¢ ,50520 Y ( 15.5614 )y € 23.716 ) {25,728 )
(¢ ,92313 s 20723 v 83748 » »34882 ))
(¢ .67380 v 2.7741 v 1,8692 r 2.0498 ))
< 118.79 >

MUMERATOR? TH/YTH FILE NAME? THUTH.2CL

OLR FILE
-251.70
{ .000G0 ) € J510146E-03) ( .24048 Y« .33300 )
¢ .323300 Y ¢ 15.948 ) 25.716 bl
(¢ ,92283 r 90499 v 83597 v 34939 })
£=1.1365 i

—051. 7s°
(s+.1)(s+.51)(s+25.7)[s2 +2(.67)(2.TT)s + (2. T7)2]

Figure C-5. Closed-Loop Frequency Response: e/ve = e/ec
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CASE: UHLH HOVER 1232LONG 31-JAN-79 ALL L0OOFS CLOSED
DENOMINATOR:
1,0000
10195 ) ¢ 31507 b ¢ .33300 ) ¢ 33595 )
{ 30520 ) ¢ 13,414 ) ( 25,714 ) £ 25,728 )
(¢ .92313 r .90723 r 83748 r 34882 )
(¢ .57380 s 2.7741 2 1.8592 r 2.0498 »)
-1 118.79 kd
MUMERATOR ¢ XD/ /uxXno
-28.252
( .00000 ) { 27433 ) « 33296 y ¢ ,33300 )
{ 15.5%94 ) ( 25,718 )
({ 92390 y 90551 r 835850 r 34448
{C 2D0P7E-01r 2.2706 v L A5432E-01, 2.2702
=-1454.9 >
MUMERATOR: XDI/VXI
~2.0034
¢ +313507 ) ( 33295 ) ¢ 33300 ) ¢ 15.514 )
23,716 >
{C ,22325 y +920595 r 83442 r +34806 »
(¢ +20132E-01r 2,2493 s +4S5463E-01y 2.24689 »
~118,79 >
] 2
X . —28.3[s= +2(.02)(2.27)s + (2.27)2]
- 2
Xa (s+.51)(s+25.7)[s° +2(.67)(2.TT)s + (2. 77)2]

Figure C-6. Closed-Loop Frequency Response:
(k/vg) + (fscdt/vf“t) S %x/%e
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Amplitude (dB)

Phase {deg) ~

CASE:

DENOMINATORS

UH1H

HOVER 1221.0NG 31-JAN-79 ALL LOOFS CLOSED

’

) ( .33300 Y 33595
3¢ 25,716 )y ¢ 25.725
«83748 r 34882 ))
1.85892 y 2.0498 2y

> (33298 ) ¢ 33300
)

834650 » 34648
«A54632E~01y 22,2702

) ¢ .32300 ) ( 15.514
»83542 s 34806 )
«ATH63E-01y 2.2589 )

. (s—.001)(s+.001)

(s+ 1)(s+ .51)

1.0000
¢ .10195 ) ¢ .31507
¢ 303520 ) ¢ 15.4614
(¢ 92313 r L0723
(¢ 467380 y 2.7741
118,79 >
NUMERATOR? XD/UXIE
-28.282
¢ ,00000 Y ( 27433
{ 15,374 H { 25.716
(¢ ,92390 v +?0551
t{ J20097E-01y 2.2706
<=1456,9 >
NUMERATOR: XDI/VXI
~2.0036
{ +31507 ) ¢ +33295
¢ 25.716 )
(¢ 92325 r +P0595
{(( .20122E-01, 2.2693
I-118.79 kg
.
e
;
c
Figure C-T.

Closed-Loop Frequency Response:

(x/vg) + (ffcdt/vf}-(dt + 1) =2 Xe/%e
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CASE: UHIH HOVER 122LONG 2-FEB-79 HDE AND HDI OPENED LOOP

DENOMINATOR:
1.¢089
( .9d¢29d ) ( .18199 } ( .1145%9 } { .31587 )]
( .33329 ) ( .33575 ) ( .58556 ) (15.614 )
( 25.726 ) { 27.282 )
(( .67287 ,» 2.7736 » 1.8663 , 2.0518 )
< 17.547 >
NUMERATOR: HDE/VHE
-4¢.998
( .20299 ) { .lel95 } o .31587 ) ( .33329 }
{ .33699 ) { .59585 ) { 15.614 ) ( 25.726
(( .67265 . 2.7692 . 1.8627 s 2.8491 )
<-229.16 >
NUMERATOR: HDI/VHI
-21.192
{ .18195 }  ( .31587 ) ( .33322 }  ( .33506
{ .59574 ) (15.614 )t 25.726 )
(( .67328 s 2.7706 , 1.8558 s 2.2485 )
<~118.79 >
.
h . ~40.91(s+ .51)
5 s(s+.115)(8 +27.3)
C

Figure C-8. Open-Loop Frequency Response: ﬁ/ﬁclﬁe [ b dt open
’ e

C-25



40
t
1 ) N .
oo !
= 20 ’ .
= : ; :
@ : -20 dB/decade -
3 v : ,
'4:;. H ‘we =.46 rad/sec
& o — . '
. f '
H - ; : . ;
' H ! !
-20 — Gy =36 dB
o — ' . ; N
= S
g i
o
~ 100
L)
3
£
a ¢" =75 deg
200
CASE: UH1H HOVER 122LONG 2-FEB-79 HDE AND HDI OPENED LOOP
DENOMINATOR:
1.¢20898
( .90299 ) { .18199 ) ( .11459 ) { .31587 )
( .33392 ) ( «33575 ) ( .53855§ ) ( 15.614 )
( 25.726 ) { 27.282 )
({ .67287 2.7736 , 1.8663 . 2.8518 ))
< 17,547 >
NUMERATOR: HDI/VHI
-21.192
{ .14195 ) { .31527 ) {( .3332¢ ) ( -33596 )
{ .58574 ) ( 15.614 ) { 25.728 )
(( .67328 2.7796 , 1.8554 , 2.8485 })
<-118.79 >
h, dt
/ e . —21.2
he s(s+.51)(s+25.7)
OL
Figure C-9. Open-Loop Frequency Response:

[ dt/fhe|
/ he dt open
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Amplitude (dB)

Phase {deg)

w {rod/sec)

20
—~20 dB/decode
we = .53 rad/sec
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—-20
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o
-108
~-200 __
CASE: UH1H HOVER 122LONG 2-FEB-79 XD AND XDI OPENED LOOP
DENOMINATOR:
1.920098
{ .09228 ) { .36768E-94) ( .23482 ) ( .33283
( .33329 ) { 15.611 ) { 25.716 ) { 26,961
{(( .923485 ¢« 99563 , «B3549 34737 1)
(( .508865 » 3.1452 . 1,5999 s 2.7979 ))
< .B4033E-841>
NUMERATOR: XD/VXD
-28,252
( .022899 ) ( .27433 ) { 3329k ) { .333%0
{ 15.594 ) ( 25.716 )
(( .9239¢ .99551 , »83653 . 34648 M
({ .29¢97E-01, 2.2796 . -45A32E-81, 2,2792 N
<-1456.9 >
NUMERATOR: XDI/VXI
-2.2236
{ .31597 } ( 33295 ) { 33330 ) { 15.614
( 25.716 )
{( .92325 ¢y 98595 ., +83642 s +34896 )}
({ .29122E-31, 2.2593 . +45563E-91, 2.2689 )}
<-118.79 >
.
2
x _ _—28.3[s2+2(.02)(2.27)s+ (2.27)2]
Xe s(s+27.0)[s2+2(.51)(3.1)s + (3.1)2
OL

Figure C-10.

Open~Loop Frequency Response:

%/%c|,

X

B [%xat open
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CASE? UHIH HOVER 122L0NG 31-JAN-7% XDI QFENED LOOF
DENOMINATOR:
1,0000
{ .00000 b {31507 M ¢ +33300 bl v 33A12 )
¢ 64743 Y ( 15,5614 b ( 25,714 ) ( 25.723 )
(( 922324 r +90740 » «B3I778 r 434854 )
(¢ 67371 y 2.7474 » 1.8315 s 2,0298 »)
< 1456.9 >
.
NUMERNTOR ¢ XDI/Vuxl FILE NAME? XDIVXI
NI FILE
-2.0035
( .31507 H ¢ .32295 ) ¢ +33300 ) ¢ 15.514 )
( 25.716 ]
(¢ 92225 y «P0575 y 93542 s +31805 b3
({ «20122E-01v 22,2493 r JASSS3E-Oly 22,2589 )2
<=-118.79 >
. 2
[xat . —2.0[s7 +2(.02)(2.27)s + (2.27)%]
:
xe |op s(s+.65)(s+25.7)[s?+2(.67)(2.75)s + (2.75)2]

i wlrad/sec) it

Figure C-11.

Open-~-Loop Frequency Response:
Jxat/xe|
[xadt open
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CASE: UH1H HOVER 122LONG 5-FEB-79 XD,XDI AND TH LOOPS OPENED

I _20 dB/decade’

DENOMINATOR:
1.0990
( .89239 ) ( .32483 ) .33309 ) .33853
{ 3.5187 ¥y ( 15.568 ) (25.714 ) ( 26.577
(( .77429 s, .16484E-91, .12762E-81, .18433E-81))
{( .92994 .99422 , .849286 s 433250 ))
< .28587 >
NUMERATOR: TH/VTH FILE NAME? THVTH
NEW FILE
-251.79
( .d8989 ) (-.89352E-84) ( .23999 y  { .33309
{ .33389 ) ( 15.961 ) ( 25.721 )
(( .92498 . 99635 . -83836 » .34442 )
< .2p183 >
e . —251.7s

8 ~ (s+3.52)(s+26.6)[s2+2(.T7)(.016)s + (.016)2]

Figure C-12.
0/6a s .
/ C'x, [ % at, e open

Open-Loop Frequency Response:
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TABIE C-10. CLOSED-LOOP SYSTEM RMS PERFORMANCE
(PROCESS NOISE AUGMENTATION REMOVED)

0g-9

hm S 4 G om e bee pe B e 4 G B e P G b Vs fmm Gma S e e e Pew Bem e fm e Yk bm S Sem S 4 Ve S s S O S e G e

RMS, TOTAL RMS, OUTPUT+CONTROLS
1 1
-! 1 1 ! 1
2.06 t Xd1l ! 1.01 ! HD
! ! !
! 2 ! ! 2
1,71 1 X922 ! 9.315E-83! Q
t ! !
! 3 ! ! 3
1,99 ! Xd3 ! 9.153E-82! TH
! ! !
! 4 ! ! 4
9.7423—1515 X336 ‘! 5.4943-'91‘! DB CONTROL ACTIVITY
1S ' -
1,81 ! Xe7 ! @2.921E-9l! DC POSITIVE-GOING
b { - CONTROL | ZERO-CROSSING RATE,
0.315E-031 X@8 1 2.259 ! HDE (1/27) (03 /0y)
! ! !
! 7 ! 1 7
V.153E-1%2t X@9 ' 3.293 t HDI
" ' ' DB 0.150 (1/sec)
t 8 ! 18
¢.494E-01t X1@ ! @.538E-32! XD -
1 1 1
by ! . DC 0.441 (1/sec)
2.921E-A11 X11 1 9.477E-91! XDI
! ! !
to19 ! v
2.293 1 X12 11.17 ! AOA
i ! !
'l ! 11l
9.186F-221 X13 12,85 1 ASE
! ! !
v 12 ! 112
3.477E-21! X14 ! d.,466E~31! DBD
! ! !
! 13 ! 1 13
¥.186E~-32! E13 ! 9.255 1 DCD
! 4 !
t 14 -
A,37 1 EVLl
!
! 15
39.3 ! ER2
1
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APFENDIX D
UH-1H, 100 XT, EXAMPLE APPLICATION

This appendix prowvides an overview of the design synthesis and assess-
ment of a longitudinal flight control system for the UH-1H at cruise
(100 kt). ©No design iteration steps are included; just the final design
data are given. Only a small sample of the design assessment data is

included. The next paragraphs explain the data which follow.

Table D-1 lists the primary design goals for this application. These
design goals are the various bandwidths, which are determined from the

functions intended to be accomplished by this FCS.

Tables D-2 and D-3 present the input data used to define the systen.
The shaping filter and controlled element state equations are given in

Table D-2, and the measurement and output equations follow in Table D-3.

Table D-4 lists the elements of the final Ffilter-observer design.

Table D-5 lists the various controlled element transfer functions of
interest, while Table D-6 presents the procedure used to meet the band-
width requirements by choosing the elements of Qg and Ry for the regulator.
As in the hover example, we were able to make use of the relatively un-
coupled nature of this problem to design all of the loop closures simul-

taneously. Table D-T7 provides a summary of the final regulator design.

With the filter-observer and the regulator synthesized, the software
is used to obtain the controller gain matrices and the controller transfer

functions, given in Tables D-8 and D-9, respectively.

Design assessment begins with the closed-loop transfer functions,
shown in Fig. D-1, and the corresponding transient responses to Ug, Wg
and he step inputs, also shown in Fig. D-1. These transient response
plots enable us to determine the behavior of the closed-loop system in
the presence of gust disturbances, as well as the behavior in response

to command inputs.



Subsequent figures provide data on the frequency response character-
istics of the closed-loop system. Figure D-2 presents the rate-of-climb
error response to rate-of-climb command. Figure D-3 plots the pitch
attitude response to pitch attitude command. The frequency response of
longitudinal velocity to a longitudinal gust disturbance input is plotted
in Fig. D-4, while the Bode plot of airspeed error to longitudinal gust
disturbance is shown in Fig. D-5. These are only a few of the many inter-

esting frequency response plots for this design.

An example of the statistical data available in the design assessment
stage is shown in Table D-10. Here the process noise augmentation has been
removed and we can examine the rms response of the plant and filter states
to the combined process and measurement noise. We can also look at the
rms response of the outputs and controls. These rms values are used to
determine control activity levels, including positive-going zero crossing
rate, which is shown to the right of the rms data. The control activity
data are used in determining whether appropriate cost function weightings

were chosen for the control rates (the Ry matrix) in the regulator design.



TABLE D=1

EXAMPLE APPLICATION

UH-1H Tongitudinal Flight Control System
Flight Condition: 100 kt (Cruise)

Functions:
Rate-of-climb command
Airspeed hold

Bandwidths: (rad/sec)
Cyclic (DB): 25.73
Collective (DC): 25.73
Pitch (TH): 1.5
Rate-of-climb error (HDE): 0.7
Integral HDE (HDI): 0.32
Airspeed Error (ASE): 0.1
Integral ASE (ASI): 0.02




F MATRIX
1

X0l

-0.888E~-01

-2.508E-02
9.000
g.eco
J.c0a
g.000
n.aee

-1.929

XQ2

q.c0e9

€.995

N.56GE-N2

a.06@

a.ccg

t.oap

£.000

C.uGa

~-N.527E-A1

TABLE D-2.

PLANT; CONTROLLED ELEMENT AND SHAPING FILTERS

= Fs + Gu + T'w s x(0) = x4
~ ~
* > ' @ x>
X &) & & @ W & @ o ]
% > @ 2y Al ~ oA £ [y '
Ny Q Lol (/] Ko g P RS <
& L o & T 0 & NS FE LY T8
.o o & S N~ T o ng"\?# O A 4 &
FF £ o IS EE ST 5 S 5L
¢} 7} < x4 ~ ) (o} [e) <
SE L o VLKL ¥ Fo G g gy N
]
= { UG WG HDC ; U W Q TH DB DC HDI XBR XDI }
3 | 4 5 4 7 8 9 1@ 11 12
X03 | X045 Xa7 Xge X{9 Xle X1l X12 X13 X114
!
p.ane | o.ene 0,800 o.6er 9.000 8.000 0.600 0. 600 8.000 8.000 !
l \
o.o22 | a.c00 0,000 8.000 0.006 0.800 3. 000 8.000 0.000 0.000 !
)
| !
-a.180 | 0.000 a.coa 0.000 6.0e00 @. 0800 e.nao . 009 6,000 ¢0.000 '
_______________ e e e e e e e e e e e s )
I !
0.ec0 -0.45)1E-@1 £.925E-81 -7.14 -32.1 6,557 1.14 0. 000 .557 0.800 !
:
‘ !
0.pe@ | ©.838E-21 -0.995 165, -1.69 5.07 -13,1 n.000 5.07 8.060 !
!
| !
0.600 | 0.500E-02 -0.660E-92 -0.701 #.000 -8.173 -0.223E-01 @.800 -8.173 0.000 !
!
| !
6.000 | 0. 000 9.¢00 1.60 0.000 6.000 ¢.200 8.e09 0. 60 0,000 !
!
!
g.caa | a.000 ¢.Coc 0.009 0,000 a.000 @.00a ¢.0e0 ¢.608 0,000 1
!
' !
g.one | e¢.n00 0. 000 0,000 6.009 9.0¢p 0.000 0.000 0.000 .000 1
[
| )
1.60 | -0.527E-F1 0.999 a.co8 -169, 8.000 .00 0.000 0.000 9.000 !
]
| !
6,090 a. 600 9. 000 4,97 0. 000 . 000 8.000 8,000 -£.333 0,000 1
1
| .
c.A0e | 0,999 8.527E-01 0,000 f.000 £.000 9.000 0.000 0.9606 -0, 108E-021

(continued on following page)

X0l

2
X02

3
X3

4
XN6

5
Xn7

6
Xa8

7
X09

8
X1¢

9
X1l

10
X12

11
X13

12
X14
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TABIE D-2. (Continued)
,,yCI
&S
& o
. Y&
<
7 S
VY XNo
u' = {DBD DCD }
G MATRIX
1 2
DBD DCD
! 1
h.000 . @00 1oXel
1
! 2
2.000 0,000 ! XD2
[}
! 3
f.088 a.pae ! X683
!
14
8.000 ¢.000 ! X06
]
! 5
a.000 0.809 1 Xe7
1
t 6
?.200 2.000 ! X083
[}
v 7
0.000 a.0e0 1 Xa9
]
! a
1.082 0.000 1 X109
]
19
0.002 1.00 t X1l
1
116
0.000 0.300 1 X12
]
111
0.402 1.000 1 X113
!
112
a,000 0.060 1 X14
]

(concluded on following page
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GAMMA MATRIX
1
PUG

0.482

0.080

f.e0e

2.0a0

6,000

0.0092

f.co0e

a.000

0,903

n.600

9.209

n.0ao

fA.ea0

¢.00a

0.cap

g.con

f.e00

0.000

f.200

3.609

€.000

2.000

@040

0.000

a.0ng

g.000

g.000

a.006

0.600

f.coe

f.coe

6.000

n.600

G.080

7.000

¢.000

fa.0080

g.co0

0.000

TABIE D-2.

o
o~}

0.600

0,000

a,. 000

a.000

a.npo

0.009

9.009

(Concluded)

PTil

a.eca

g.000

0.000

0.e0a

‘.008@

f.000

¢.nA0

G.009

6.008

0.000

¢.n00

0.za0

n.coa

e.ene

a.noq@

c.0a0

f.000

11
PXB

g.090

0.600

6.000

2.000

12
PSE

0,060

6.a00

g.€0@

a, 600

0.809

n.cea

10
X12

11
X13

12
X14



L=

HR MATRIX
1
Xel

a.¢on

0.200

0.e00

A.600

n.ene

g.6c8

-7.999

¢.pae

a.090

2 3
Xe2 Xe3
a.004d 0.c0¢
a.enn 0.%049
9.¢00 c.een
f.600 a.000
¢.0an 8.000
0.000 0.069
n.nen 1.00
g.00e0 5.008

-3.527E~-01 0.00Q

¢.non N.cey

-0,593E-A2 3,000

_————— — — — —— —_—

TABIE D-3. PLANT; OUTPUT AND MEASUREMENT EQUATIONS
= Hpx H
R = - e s
Hp
= Hx + v
@
X . S @ & £ o
L) o & O [e) O o4 N
& < F S, S & o &5 é’{b‘
S & T G SE B Gy He
F & S S X B xS
T QY Ve Y 2 Fo TE G
= {ED Q@ T DB DC HE HDI XD XDI }
4 5 5 7 ] 9 lo
X6 Xe7 X083 Xn9 X18 X11 X12
0.5272-01 -A,999 0.9209 169. a.000 a.r00 G.CC9
6,080 ¢. 0080 1.00 ¢.0e0 f.000 6.000 f.000
a.con 0,007 ¢.n09 1.00 f.e00 0.0n%0 8.008
0,000 a.690 C.R66 0.0c0 1.00 n.0ap e.0¢0
0.0008 0.nga A.0n0 T.0d9 0.000 1,00 B.0nan
¢. 100 9.68080 0.n03 3.000 7.060 n.604 1.09
-0.527E-01 /.99 8,000 -159, n.Co6 a,aen 0.02p
A.000 0. 000 a.e00 f.000 0.008 ¢.109 2.a00
€.999 0.527E-31 0.¢09 0.0080 f.aa0 G.009 0.000
0.999 4.527E-01 0,000 ¢.000 f.000 £.re0 0.000
0.000 f.593E-¢42 0,009 g.000 e.¢o0 9.0a0 9.000

11
X13

0.000

8.000

0.806

6.000

0.000

0.000

G.o0n

f.000

-0.e06

G.ehe

0.e00

12
X14

a.00a

e.ceo

2.0neo

6.0008

0.600

f. 00N

fA.noo

1.0@0

a.000

7. 000

B.a00

HDI

HDE

ASI

ASE

10
XD

11
ADA
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2 MATRIX DIAGONAL,
1

18.0

9.009

f.100E-

0.160E~

0.1C00E~

fA.100E~

N.1608E~

0.0tn

0.109E-

1
1
]
!
:
"3
05
03
03

a3

23

POB

pPDC

10
PHE

11
PXB

12
PSE

K12 GAIN MATRIX,
2

1
HD

0

TABIE D-k.

R 4ATRIX DIA
1

! !
10,800 !
1 '
1 !
1 or.ees !
! !
! !
1 0,000 !
! '
! 1
1 6.0c0 !
! !
! !
{6,600 !
! !
' !
y 6.900 1
! !
! !
10,590 !
! 1
! !
v 0,000 !
! !
1 !
| 0.000 !
I 1

FILTER

3
TH

7.130E-06 -0.2087E-37 ~0.22CE-04

1.53

1.39

4.41

~259.

f.417E+04

GONAL,

HD

4
DB

e.060

a.noe

2.009

FILTER~OBSERVER SYNTHESIS

FILTER

@.000

n.000

e.oace

CLOSED LOOP EIGENVALUES, FILTER
1

!
0.333 1 1
189, t E13
!
!
25.1 ! 2
1849, { EOL
!
!
a.111 ! 3
189. t E02
!
A
HDI

-3.155E-12

9.153E-€3

0.881E-0S

7 8
HLE ASI

RMS STATE EST ERROR,
1

2.03

0.1087

0.903

0.2640

g.0a0

0.6000

0.000

0. 000

9
ASE

£.134E-13 0.518E-11 -0.629E~08¢

3.156E-0A -(1.503E-A2 -0,120

-f.254E-A5 -0,295E8-03

1.18

n.171g-121

El3

EN1

EA2

xel
xe2
x03
Xe6

Xa7

[3
X08

X£9
X109

X1l

10
X1l2

11
X13

12
X14

FILTER



TABIE D-5.
CASE:

DENO4 INATOR:

1.2909

( .00009

( .69142

({ .22354
(( .43625

< .471962~0

NUMERATOR:

~-.17289
( .38000
( .33339

CONTROLIED EIEMENT TRANSFER FUNCTIONS

) ( .020490

)

s 17435
1.4971

1>

TH/DBD

) ( .00202
) ( 1.2044

<-.18194E-982>

NUMERATOR: TH/DCD
-.22300E-21
( .cevs3e ) ( .28E89
( .33309 } (-3.1285
< .G7562E-93>
NUMERATOR: HDE/DBD
5.0374
( .8d209 ) ( .98989
( .33308¢ )
(( .15642 , 2.6370
< .49346 >
NUMERATOR: HDE/DCD
-13.169
( .02002 ) ( .90830
(( .70493 , .17927
(( .30398 1.3491
<-.76012 >
NUMERATOR: HDI/DCD
-13.169
( 23029 ) ( .P308d
(( .70493 s 17927
({ .3c3¢8 1.3431
<-.78912 >
NUMERATOR: ASE/DBD
. 82341
( .0¢0e0 y  ( .edgdn
( 1.2595 )
({ .731%4E-921, 2.5391
< 2.2268 >
NUMERATOR: ASI/DBD
.82341
( .8208909 - ) ( .29098
(( .73184E-21, 2.5391
< 2,2286 >

UH1H 109KT 128LONG 3@-JAN-79 CONTROLLED ELEMENT TF'S

) ( .00039 y ( .80090 )
.38973E-41, .16993 1)

.65312 , 1.3472 ))

) ( .20893 } ( .14719E-81)
)

)y ( .e2300 ) ( .298BlE-81)
)

) ( .29890 ) ( .42383E-81)
.41248 , 2.6846 1)

Yy ( .P0200 )

.12637 , .12715 ))

.4¢518 , 1.2771 ))

)

.12637 , 12715 M)

.48618 , 1.2771 )

) ( .02389 ) ( .33300 )
.18562 ; 2.5323 )

) ( .33389 ) ( 1.2596 )
.18562 , 2.5323 )

D-9
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Longitudinal
Cyclic
Actuator

Main Rotor
Collective
Actuator

Pitch
Attitude

Rate-of-
Climb Error,
Proportional

Rate-of-
Climb Error,
Integral

Airspeed
Error,
Proportional

Airspeed
Error,
Integral

D

25.7

25.7

0.7

0.32

DB
DBD
o,

C

TABIE D-6.

Rpmp = 1.

_ 1 K=1
8 n=20
0.2 K= 0.2
& n=1

15.63 K = 15.63

- =32.13 K= 3%.13

n=0
a K=1
8 =0.

SUMMARY OF Qg AND Ry SELECTION

Qg = 662.34

= 354, Tho

Qugp = 3.4k

Qugy = -00137

Rpep = 10.0
B
DCD| =
®e
x| _a
DCD T s
| _ o.07
DC © 52
HDE
oc|, =13
e
HDI - 15.3
DC 8
e
ASE _ .206
HDE T s
Qe

ape = 6623.4
Qg = 27,372,
214,3
Qg = O
Qmpr = 2.84
Qg = 83,594.6
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CLOSED LoOP

TABLE D-7. REGULATOR SYNTHESIS 1
Q2 MATRIX DIAGONAL, REGULATOR . -,
: 25,7 S|
_ - 1189, 1 X9l
! ! 1 ' !
!@.080 ! HD T
! ! ! . !
X P 1184, 1 Xe2
1 B.202 1oQ . t :
! L ro2.2 1 3
| 8.355E+861 TH Po-laa. 1 el
] 1 * M
! ! !
1 1 4 :
: : t 2,28 t oA
, G62. tome L1240 1 x06
< |
! ! 5 f !
! 2.6628+84! DC i\ g.728 t s
! ! \ 1
' T 6 : -174, ! xe7
!t 2.84 ! HDI ' t
i : ; 1 8.728 t 6
1 d.808 ! HDE f 174. i x08
z L : s
! 9.137E-82! ASI b3S H <o
! ! R MATRIX DIAGONAL, REGULATOR ; ) i
! t 9 1 ' (
! !
A }ASE _ ) \ 9.627E-811 8
X e \ N : 188, f X190
! p.002 ! XD to1.e8 ! DBD ) |
, !
! : ! ! ! 9.156E-81! 9
! 111 ! 2 {182 { x11
1 B.280 ! AOA 1 19,0 ! DCD : . \
v K v R : ,
12,116 Y
1 1ed. ! X12
! !
! !
v 9.269 t 11
1183, ! X13
! !
! !
1 9.189 112
1182, 1 X14
! !
REGULATOR GAIN MATRIX
1 2 3 4 5 6 7 8 9 19 11
X81 Xp2 X23 X986 x87 X08 xn9 X1 X11 X12 X13
!
1 -2.217 1.18 2.99 2.682 1.8 -277. -895, 27.9 -2.627 1.34 23.9
!
!
! -2.852E~02 -2.496 -3.981 8,335 -3.243 3.82 61.3 ~3.627E-21  25.9 -g.324 -9.934
1

EIGENVALUES, REGULATOR

12
X14

!
8.225E-011 DB
!

1
9.938E-82! DC
!

1
D

2
D



BF MATRIX
1

HD

-2.314E-95

-36,3

594.

DF MATRIX
1

HD
28.1

-11.6

4.97

261.

TABLE D-

3.539E~-93

2.613E+24

-2.419E+94 -3.100E+26

0N

271.

-2.14

-9.434E+84

D.206E+04

8. CONTROLLER COEFFICIENT MATRICES

AF MATRIX
1

E13

2
Bl

-¥.614E-938

-2.183

1.17

2.657E-96 -@.171E-B5

8.86

-125.

CF MATRIX
1

E13
-23.9

3.934

-27.9

#.627E-91

-20.1

325,

E21

~2.558

-9.313

9.627

-25.9

3
Ed2
o
2.139E-26! E13
1
v2
1.52 + E®l
]
t 3
-25.9 ! EB2
)
6 7
HDI HDE

¢.263E~12 =-¢,180E-12

-3.145E-94 -9.157E-93

~3.422E-34 J.546E-94

3
EQ2
1 1
-1.22 ! DBD
H
! 2
3.479 !t DCD
!

6 7
HDI HDE
-1.34 -2.99
2.324 2.981

8
ASI

-3.998E-11

J.478E-83

8.147E-B2

8
ASI

-9.193E-01

-4.786E-D22

9
ASE

1

8.162E-86¢ E13

1.87

-38.6

ASE

-2.15

9.281

2
E2l

3
EQ2

DBD

DCD



TABIE D-9.

CASE: UHI1H 189KT 12BLONG

DENOM INATOR:
1.30089
( 11136 ) ( .33389
< .92977 >
NUMERATOR: DBD/ HD
28.957
(-.81761E-31) ( .12973
<~.99396E-31>
NUMERATOR: DBD/ Q
273.94
( .57922E-931) ( .19474
< 129.19 >
NUMERATOR: DBD/ TH
-4344.4
{ .11516 ) .33389
< 386.48 >
NUMERATOR: DBD/ DB
-27.876
( .12362 Yy ( .3339092
<-22.684 >
NUMERATOR: DBD/ DC
L6271¢
( .1914@ )y { .33390
<-12.5d9 >
NUMERATOR: DBD/HDE
-2.9885
( .11133 ) { .333¢9
<-2.7778 >
NUMERATOR: DBD/HDI
-1.3482
{ .11135 ) ( .33329
<-1.2460 >
NUMERATOR: DBD/ASE
-2.1499
( .11284 ) .33328
<-.66249 >
NUMERATOR: DBD/ASI
-.19271E-31
( .12935 ) ( .33328
<-.20887E-01>

2-FEB-79 CONTROLLER TRANSFER FUNCTIONS

) ( 25.874
) ( .33320
)y ( 43.160
) (-2.3193
) (19.767
) (-589.14
) ( 25.274
) ( 25.874
)y ( 8.2085
) ( 25.162

CONTROLLER TRAWSFER FUNCTIONS

NUMERATOR: DCD/ HD
-11.599 )
( .12443 } ( .3332¢
< .19891 >
NUMERATOR: DCD/ OQ
-2.1404
( .l4888 ) ( .492243
<-128.43 >
NUMERATOR: DCD/ TH-
2059.9
( .12469 ) ( .33300
< 68.546 >
NUMERATOR: DCcp/ DB
.62739E-21
( .16364 } ( 33399
<-3.3858 >
NUMERATOR: DCbh/ DC
-25.87@%
{ .18784 ) { .33398
<-17.484 >
NUMERATOR: DCD/HDE
. 98266
( .11148 ) ( .33389
< .91216 >
NUMERATOR: DCD/HDI
.32357
{ .11137 ) ( .33399
< .39289 >
NUMERATOR: DCD/ASE
.28138
( .11284 ) ( .33329
<-.39735 >
NUMERATOR: DCD/ASI
-.78565E~-32
( .13233 ) ( .33309

<-.864932-22>

(-.47364

( 998.356

( .80143

(~967.21

( 18.819

{ 25.274

( 25.974

(-29.469

( 24.982
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CASE: UHLH 199KT 128LONG 31~-JAN-79 ALL LOOPS CLOSED
DENOM INATOR:

1.8929

.15598E-¢1) ( .62A8%E-21l) ( .11136 Yoo .33308 )
.33514 ) (25.074 ) (25,736 ) 25.7386 )
{ .99458 ¢ 072781 . 72387 + -79847E-21))

( .56441 y 2.2044 » 1.2442 , 1.8197 )}

(
(
(
(
< .51948 >

Transient Response to -10.0 ft/sec ug Step Input

NUMERATOR: HD/ UG FILE NAME? HODUG.CL

NEW FILE

.91952E-91 h

{ 22000 ) ( .18569E-81) ( .11341 ) .33308 ) (ft/sec)
(.35737 ) 4.3924 ) (-le.va3 ) ( 25.736 ) [}
(-99.898 )

((-.96687 , .1u688 ,~-.18334 , .2728lE-¥1))

< .28955E-91>

5 - - -
NUMERATOR: TH/ UG FILE NAME? THUG.CL 8C
NEW FILE (in)
0 f—— —— ——— e e s . = .o e e ———
-.50000E-02 —
(.93651E-23) ( .14365E-91) ( .11334 ) ( .3339 ) -
{33390 ) ( .483¢3 ) ( 1.9959 ) ( 12.441 ) . e e e e e o .
(25.736 ) (112.96 ) ' ;
<-.15663E-84>
05 - —————— o - e s e ——— ———am— o
9
{rad)
NUMERATOR: DB/ UG FILE NAME? DBUG.CL (s} / s - = -- - -
NEW FILE
2.1469
(.11239 ) (.33308 ) ( .47528 ) ( .61244 )
(-1.3468 ) (9.9236 ) { 25.736 )
((-.6B707 , .903B4E-32,-.62199E-82, .6S5672E-82))
(( 64328 | 1.8345  , .66549 - , .79287 ) Uas,
<-.78321E-93> (ft/sec) _
o e e
- P
NUMERATOR: DC/ UG FILE NAME? DCUG.CL - e e al - Ceeee
NEW FILE 1
-. 28998 e -
(-.11589E-81) ( .26859E-81) { .11454 ) ( .3338¢ ) 8 :
( 34735 ) (=25.799 ) ( 25.736 ) (in)
(95211, 78672, 74995, .24054 ) :
(¢ .57373  , 2.1627  , 1.2488  , 1.7713 1)
<-.21531g-92> '
=2 sec = T o
NUMERATOR: ASE/ UG FILE NAME? ASEUG.CL
NEW FILE
Choen ) oetssse-an) (nizse ) (330 Figure D-1. Closed-Loop System Transfer Functions,
(35,738 ) (ieas ) LMo casam ) Transient Response to Commands, Transient
(( 55999 2.2381 1.2503  , 1.8556 1) Response to Disturbances
<3.1897 >
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Normal Gust Transfer Functions

CASE: UHIH 1CaKT 128LONG 31-JAN-79 ALL LOOPS CLOSED

DENOMINATOR:
1.0398
{ .15598E-31) ( .62689E-31) ( .1l1136 Yoo L3330 )
( .33514 ) {25,074 ) {25,736 Y (25.735 )
{( .99458 ., 272781 . -72387 ., «-75547E-41))
(( .56441 ; 2.2044 , 1.2442 1.8197 1)
< .51948 >
NUMERATOR: HD/ WG FILE NAME? HDVG.CL
NEW FILE -
-.99978
{ 089090 Y ( .16914E-21) ( .82955E-vl) ( .1138S )

{ 396808 ) .33389 Y 1.4183
{ 44,274 )
(( .94989 , 4.6358 , 4.4035 '
<-.54858 >

NUMERATOR: TH/ WG FILE NAME? THWG.CL

NEW FILE
. G60UIE~D2
{ .18956 ) { .33398 )y .33309
(( .89544 , .11871E-91, .19642E-01,
({ .94942 , .85231 , 81879 ,
({ .65437 , 37.9048 , 24,243 .
< .29579E-93>
NUMERATOR: DB/ WG FILE NAME? DBWG.CL
NEW FILE
.11338
(~.2927dE-21) { .11094 Y ( .33382

{ 1.4251 ) (25.736 ) {-248.88
((-.12448 ., +16735 ,=~.22832E-91,
(( .85853E-41, 1.1499 . -98642E-01,
< .13325E-91>

NUMERATOR: bC/ WG FILE NAME? DCWG.CL

NEW FILE

-.14829E-821

{ .22833e-91) - ( .18152 ) { .15596
( 33392 ) 25.736 ) (-875.79
( .97856 , .83268 . .80817 B
( .55588 2,2338 . 1.2417 A
+49799E-81>

(
(
<

Y ( 25.736 )

1.4491 ]

) { 25.736 )
+526W8E-d2))
.27977 1)
28.915 1)

y ( .65235 )
)

.16504 1)

1.1447 )

) .29478 }
)

.29855 1)

1.8558 )

NUMERATOR: ASE/ WG FILE NAME? ASEWG.CL

NEW FILE

-.52749E-81

( .e0d99 ) .19942 ) { .33309
( 3.1982 ) [ 28.768 ) ( 25.7386
{{ .923564 , 91497 , .B4519 .

({ .23449 . 1.5927 , 37333 B
<-66.127 >

) (.33355 )
) (29.272 )
.35867 ))

1.5483 1)

Figure D-1.

Tronsient Response to -1.0 fi/sec wg Step Input

5
uase [
(t1/sec)

o]

5"
5 [
(in)

0

I—-—Zsec-—[

{continued on

(Continued)

following page)
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Rate - of - Climb Commond Trensfer Functions

CASE: UHIH 194KT 128LONG 31-JAN-79 ALL LOOPS CLOSED
DENOMINATOR:
1.9920

{ .15598E-41) ( .62689E-81) { .11136 ) .33300
.33514 ) (. 25.074 ) (25,736 ) 25.738

(

{( .99458 , «72781 , +72387 , +»75547E-81))
(( .56441 . 2.2944 o lo2442 . 1.8197 3]
< .51948 >

NUMERATOR: HD/HDC FILE NAME? HDHDC.CL
NEW FILE

27.968

{ .15617e-91) ( .63541E-91) { .1l1l136 ) ( .32788
( 33392 ) ( .42471 ) ( 25.874 }  ( 25.736
(( .32561 . 2.4279 s +79256 , 2.2955 N
< .51948 >

EXCESS OR INCORRECT ROOT FOUND

NUMERATOR ¢ TH/HDC FILE NAME? THHDC.CL
MEW FILE

.49448
( .11135 ) .33399 Y ( .33302 ) .39485
( 1.3v04 ) (25.e74 y (25.732 )
{( .89777 , +12159E-91, .10916E-21, .535SBE-02))
< .2984GE-93>

NUMERATOR: DB/HDC FILE NAME? DBHDC.CL
NEW FILE

-2.9885

(~.26572E-a1) { .11136 Yy { .3339¢ ) .38836
{ .630d1 )y (25.974 ) (25,736 }

({~.17394 , «11043 »—.19299E~981, .18875 H
(( .48953 , 1.5212 , -74959 , 1.3352 })

< .13345g-491>

NUYMERATOR: DC/HDC FILE NAME? DOCHDC.CL
NEW FILE

. 93966 )
( .22199E-81) ( 11135 )} ( 11699 ) ( .31741
( .33398 ) ( .43851 ) ( .98728 ) ( 25.974

( 25,736 )
(( .55628 , 2.2228 , 1.2365 , 1.8471 )
< .40857E-31>

NUMERATOR: ASE/HDC FILE NAME? ASEHDC.CL
NEW FILE

-2.2226

{ 0208 ) ( .11135 ) {33392 ) .33354
{ .39154 ) ( 1.3853 ) {25,274 y { 25.735
({ .16643E-81, 2.56149 , .43519E-81, 2.6145 )

<-59.834

>

Figure D-1.
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CASE: UDH1H 1B@2KT 12BLONG 31-JAN-79 ALL LOOPS CLOSED
DENOMINATOR:
1.29090
{ .15598E-81) ( .62689E~-921) { .11136 ) { .33382 )
( .33514 ) ( 25.274 )] ( 25.736 ) ( 25.736 )
({ .99458 s .72781 , 72387 s, +75647E-81))
(( .56441 2.2944 , 1.2442 . 1.8197 ))
< .51948 >
NUMERATOR: HDE/HDC
1.08000
{ .800098 ) { .17302E-81) ( 11135 ) { .33320 )
{ .34523 ) { 25.974 ) ( 25.736 ) ( 26.861 )
({ .99660 s «12917 , -12873 + +10644E~-01))
(( .51985 , 2.5050 s 1.3022 . 2.1399 ))
< .42192 >
he s[s2 + (.997) (. 13)s + (.13)%]
Y 2
he (s+.06)[s% +2(.995) (. T3)s + (. 73)2]

Figure D-2.

ﬁi
1

Closed-Loop Frequency Response: fle/flc
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CASE: UH1H 129KT 128LONG 31~-JAN-79 ALL LOOPS CLOSED
DENOMINATOR:
1.88¢8
( .15598E-81) ( .62689E-B1l) ( .11135 ) ( .333@9 )
{ .33514 ) { 25.874 ) ( 25.736 ) ( 25.738 )
({ .99458 s «72781 s «72387 , »75647E-91))
(( .56441 , 2.2044 , 1.2442 , 1.8197 3]
< .51948 >
NUMERATOR: TH/VTH FILE NAME? THVTH.CL
NEW FILE
784.78
( .00 ) ( .11B16E-81) ( .12216 ) { .21162 )
( .33380 } ( .3330¢ ) (1.2135 ) (-2.7713 )
( 25.736 )
<-2.#661 >
8 . 705.0s(s+.212)(s+1.2)(s-—2._7"()

8c  (s+.063)(s+25.1)(s+25.T)[s2+2(.99)(.T3)s +(.T3)21[s2 + 2(.56)(2.2)s + (2.2)2]

Figure D-3. Closed-Loop Frequency Response: e/ve = e/ec
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CASE: UH1H 1@8KT 128LONG 31-JAN-79 ALL LOOPS CLOSED

DENOMINATOR:

1.208¢

( .15598E-491)
( .33514 )
({ .99458 B
(( .56441 N
< .51948 >

( .6268%E~21) ( .11135 y ( .33322 )
( 25.874 ) ( 25.736 ) ( 25.736 )
.72761 s, «72387 , «75647E-81))
2.2244 . 1.2442 . 1.8197 })

NUMERATOR: X86/ UG FILE NAME? UUG.CL

NEW FILE

«45190E-91

( <11484E-231)
{ .48113 )
( 46.923

(( 54154 .
< .51818 >

( 11322 ) ( .33297 ) ( 333081 )
( 1.2669 y  ( 23.821 ) ( 25.732 )

2.1339 s, 1.1551 , 1.7931 ))

.ob5(s+ U48)(s+ 1.3)

Vo (s +

063352 +2(.99)(. T3)s + (. 73)2]

Figure D-4. Closed-Loop Frequency Response: u/ug
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CASE: UHIH 12¢KT 128LONG 31-JAN-79 ALL LOOPS CLOSED

DENOMINATOR:
1.9@29
( «.15598E-81) ( .6268%9E-¢1) ( .1ll1l13% ) ( .33388 )
( .33514 } ( 25.874 ) ( 25.736 } ( 25.736 )
(( .99458 s +72781 , +72387 ; «75647E-91}))
(( .56441 , 2.2044 , 1.2442 , 1.8197 1)
< .51948 >

NUMERATOR: ASE/ UG FILE NAME? ASEUG.CL
NEW FILE

-.99862

( .008989 )  (-.64568E-92) ( .11254 ) ( .333p8 )
( .33499 ) ( .65545 }y  ( .79111 ) ( 24.383 )
( 25,736 ) { 26.458 }

({( .55989 s 2.2381 , 1.2513 , 1.8556 ))

< 3.4897 >

UASe . —1.0s(s+.655)(s + .79)

Ug (s+.02)[82 +2(.99)(.T3)s + (.T3)2]

Figure D-5. C(losed-Loop Frequency Response: uASe/ug
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RMS, TOTAL

B.454E-92!
1

2.722E-82!

P.449E-0a1!
!

8.779E-011

1.36

8.233E-21!

63.6

#.233E-01!

2.35

36.1

Xl

X2

X83

X06

X387

X8

X639

X193

X1l

1@
X12

11
X13

12
X14

13
E1l3

14
Ed1

15
EQ2

TABIE D-10. CLOSED-LOOP SYSTEM RMS PERFORMANCE

(PROCESS NOISE AUGMENTATION REMOVED)

RMS, OUTPUT+CONTROLS

0.454E-21
]
'
2.722E-921
]

!
8.449e-21!
]
!
8.779E-01!
1

1.35

2.18

2.812E-82

8.318

!
!
!
!
!
!
!
]
!
1
!
!
]
\
]
!
!
!
!
!
!
!

0.9635—61.

HDI

HDE

ASI

ASE

le
XD

11
AOA

12
DBD

13
DCD

CONTROL ACTIVITY

POSITIVE-GOING

CONTROL 7ZERO-CROSSING RATE,
(1/2ﬁ)(Qk/Ux)
DB 1.13  (1/sec)
DC 0.197 (1/sec)




APFENDIX E
METHOD EXTENSION WHEN (I'pQrp) IS SINGULAR

AFFROACH

Augment the I'g and D' matrices so that the rank of T'o is Dy

and the first gy columns of I represent the process noise effects which
are actually part of the first principles plant model. The remaining

Ny — Dy = Ny, components of process noise are added for convenience in
obtaining alternative limiting forms for the singular filter. The inten-
sities of these Iy, components are allowed to approach zero according to
some externally specified ratio relationship chosen by the designer. (This

is akin to the arbitrariness in selection of observer poles by the designer.)

This means that the diagonal 4 matrix has the form
2 = diag {a1, "t Aoy M, HAngogps 7 Mg |

where qHW1+1 = 1 and p approaches zero from above. Notice that there is
also some arbitrariness in the elements of the ywp columns used to augment
the I'g and I'c matrices. The effective maximum number of parameters which
may be arbitrarily selected is (nnw2 — 1). The only restriction on para-
meter choices is that (quré) have full rank, r = my, for p > 0. Notice
also that the columns augmenting I’y may be identically zero by choice.

This in turn results in Aqq and Ajo (see below) being null matrices.

The terms involved in the Euler-Lagrange equations for the optimal
filter are I'1qr7, I'yArs and (Pgoré)_1.



Separate the terms Tqri, P1QPé and (PQQPé)—1 into components which

are independent of and dependent on p. That is, let

1 4
MAr = Epq + HAqy
1 4
Ty = Hip + HAp = (o))
A 4 -1
ToTp = =pp + whpp £ A

Next, consider the behavior of various factors occurring in the Euler-

Lagrange equations in the limit as u approaches zero from above.

1im ' —
pio T = =m0
13 ty—1 11
uimo (roara) " = I-l—?'inoo (al®) + 4t )
lim ' 1 lim (. (1 2) = (2
Wi Tioa(Tears)” = eimo (2129*( = npA3) :12A( )/H)

lim ' 1y—1
pio T1a(ra@rp)” mpoarg

- im0 (1) 2) =t o (2) 4 = (2)
T pdo (~“~12A V=i 2y Ve + =08(2) a3, + Ey2a @) =]

The procedure continues by substituting the separated quantities into

the Euler-Lagrange equation:



(s1~Fq1) My
- :
HijRy Hyy  (8I+Fqq)
X30 G1
= +
A0 (]

The result is:

(sI—Fqq +[E12A(1)

« 018 =08 (2) /1m0 1)

_
(H{{Ry Hyq

B + 15,0801 + a2) /1mp 1)

xq

M

F1@é(F2QFé)—1 Foq

' =1
Fa1{rp@p) Foq

™ Ql"é(l"gqré)—1 Go o]

' -1
Fp1(raqrs) Go 0

o] F12 u
1 1 i
Hi1Ey  —Hi1Ry Hye 25

—

(z11 —[=al Dz p + 200 By

+ E]ZA(Q)A{Q + E-lQA(Z)E'I'Z/U'] )

(s1+ 7], -F3,0al1=15

—mqara(reqrd) ! roar]

-1 (Tp@s) " roary

—Fhq(rpara)” (s1-Fpp)

+ 2@ Aj + a@ip )

(=108 + 240802 47,008 )

X10
= Z20
Mo raq (1) +a(®) /g
(61 - (z1eal")
0
+ A12A(2) +E12A(2)/H]G2
.
—Fé,[A“) +A(2)/u]G2 Hy Ry

N

E-3

P (Tpary) ™
+ 220
Fb1(roars) ™!

g (rears) (sT—Fpo) | | u

Z1

%2

xq

X

(Fip + [Z1pa¢ 1) + 2,08(2)
+ 20802 /0] (sT - Fpp]) u
Z1

—1 l 1
(-Hi1Ry H12+F21[A( ) zp

#A®) 81— Fool) i



The revised steps in solution are as follows.

Evaluate each element of each matrix in terms of
numerical coefficient values for so, s1, so/u and
s!'/u in each matrix.

Examine the resulting matrix equations via inspec-

tion of the numerical coefficients. If any equation
has one or more non-zero coefficients for s°/u and/or
s/k, then multiply that equation through by p and let
u 0. (This is equivalent to simply retaining only
the coefficients for s9/u and sl/u in that equation.)

Eliminate a number of variables corresponding to the
number of equations which are rendered algebraic in
x1 and 2] as the result of the previous step, via
substitution.

Apply eigenvalue decomposition (or matrix Ricecati
equation solution) technique to the resulting reduced
Euler-Lagrange equations (refer to pages A-5 to A-T
of Appendix A). Notice that the form of the filter-
observer solution must be modified to allow for dif-
ferentiation of the measurements. Multiple differ-
entiation may be required.

Use the algebraic equations identified in the next-to-
last step to obtain estimates of the remaining states.

E-k



APFENDIX F

EFFECT OF AUGMENTING FROCESS NOISE INTENSITIES ON
FILTER EIGENVALUES AND RMS ESTTMATION ERROR

Data for three filter design passes is summarized in this appendix.
The filter is for the longitudinal dynamics of the UH-1H helicopter in
100 kt cruise. All measurements are noise free. The nine measurements
include airspeed error and integral airspeed error as appropriate for
cruise. The third and final filter design has acceptable rms estimation

error and closed-loop eigenvalues which are within the acceptable range.



c~d

TABIE F-t1. INITIAL FILTER DESIGN, 100 KT

Q MATRIX DIAGONAL, FILTER )
. RS STATE EST RRROR, FILTER
1

! 1 - -
4,24 ! PUG ! ! 1
) !0, 482 ! X0l
! 2 ! !
2.92 ! PWG ! ! 2
\ !op.128 1 X62
! 3 1 '
1.00 1 PHC ! ! 3
; 0,000 1 Xp3
'oa ! !
£.108E-031 P U ! t4
| f 9,482 ! X06
: 5 ! !
0.10CE-03! P W ! ! 5
y ! 0,254E-011 X@7
| 6 CLOSED LOOP EIGENVALUES, FILTER ' 1
8.180E-431 P O 1 ! ! 6
, ! 06.800 ! XP8
ro7 - - ! !
0.1C0E-831 PTH ! ! ! v 7
' ! 126, ! 1 ! 0.486E-131 X09
, q ! 180 ! E13 ' 1
3.1005-031 POB ! ! ! ! 8
) ) ! !t 9.639 1 Xla
' 9 ! (1.392 ! 2 | ]
8.109E-831 pDC !ooolen. v ECL ! !9
; ) ! ! 0.n0@ t X1l
!o1g ! ! ! !
3.100E-631 PHE ! A.331E-02! 3 ! {o1p
: ! 184, 1 EA2 !on,00a ! X12
11l ! ! ! !
6,10CE~031) PXB - = ! to11
: ! 0.117E-911 X13
to12 ! !
A.166E-U3! PSE ! 112
' t #.009 ! X14
- ! i
K12 GAIN MATRIX, FILTER
1 2 3 4 5 A 7 P
HD Q TH D3 DC HDI {IDE AST ASE
) ! 1
-0.335E~51 -0, 285 5.52 C.pao n.000 f.144E-07 -0, 303E-07 -0.449E-36 ©.1R80E-63! E13
1]
! 2
£.72 -p.0248 -@.113e+04 0a.0480 a.0ga ¢.C528-05  0,535E-95 -0.287E-03 -A.969 t ECL
t
1 3
-125, 2.23 1.211E+05 &_008 c.000 .353E-06 ~p,9958-04 -B.125E-04 -0.838E-G11 EO2



-

TABIE F-2. SECOND FILTER DESIGN, 100 KT

Q MATRIX DIAGONAL, FILTER RMS STATE EST ERROR, FILTER
1 1
! 11 ! I |
4,24 ! PUG ! 0,375 1 X0l
! ! ! !
! vo2 ! v2
12,92 t PWG ! 0.9345-01! X£2
1 ! ! !
! t 3 ! 13
! 1.00 ! PHC t0.n0@ 1 Xe3
! ! ! !
! 14 ! 14
! 0.100E-01! P U 10,875 1 X@6
! ! ! !
! 15 ! 15
{0,008 tpw ! A.452E-04)1 X07
! ! 1 !
! t6 CLOSED LOOP EIGENVALUES, FILTER ! YA
t9,100E-931 P Q 1 ! 6,600 ! XES
! ! ! ' !
! v 7 - - ! 17
! 0,180E-05! PTH ! \ ! B.736E-13! X809
! ! 10,333 | ! !
! ! 8 1184, ! E13 ! ! 8
! 0.10AE-23! pDB ) | ! B.00A 1 X1¢
! ! ) 1 ! !
! ro9 1 240, ) ! !9
! 0.1¢AE-031 PDC 1 189, 1 Ecl 10,006 ! X11
! ! 1 1 ! 1
! toge \ \ ! 1 1e
! @.1GOE-A3! PHE !on.1158-011 3 ¢ e.eam 1 K12
! ! Y ‘ ! !
; — : 183, E EA2 : -
toe.oen ! PXB _ _ toa.cen ! X13
! ! ! !
! 112 ! To12
! 0.166E-03! PSE ! 0,000 1 X14
! ! ! !
K12 GAIN MATRIX, FILTER
1 2 3 4 5 5 7 a °

HD Q TH ) nC Y HDF, ASI ASE
! r 1
! 0.433E-05 -0,8145-08 -0,731E-33 0,004 ¢.000 ¢.696E~19 §,537E-12 @.493E-14 -0,228E-08! F13
! ]
! 12
t13.1 0.755E-02 -7,221E+04 €,U0C c. 602 5.284€-04 3.178E-05 -8,944E~63 -C, 904 ! ERL
] !
] ! 3
1 -238, 0,450 8.4028405 0,003 0,000 0.158E-95 -{0.323E-04 -9§,502E-04 8,472E-01t E02
1 !

11 I ——

T




H=d

TABIE F-3.
Q MATRIX DIAGONAL, FILTER
1
! [ |
! 4,24 ! PUG
! !
! T2
! 2.92 1 PWG
[ !
' t 3
! 1,40 ! puC
! !
! t 8
1 l0.8 teu
! !
! t 5
! 0.009 1P
! 1
' v 6
! 0.1e2B-431 P Q 1
! !
] v 7 -
! M.189E-@5! PTU 1
! ! t 0.333
! ! 8 ! 189.
1 ¢.100E-03! PDB 1
! ! ]
! !9 v 25,1
! #.190E-43! PDC 1 1e0.
! ! '
! 11e )
UL 1NRE-03) PYE 1001
! ! ! 186,
! 11 !
! a.0u0 ! PXB -
! !
! 112
! 0. 100E-D3! PSE
1 ]
K12 GAIN MATRIX, FILTER
1 2 3 4
HD Q ™ DB
! .
1 0.130E-96 -7,267E-A7 -0,220E-04 0.00C
1
] .
! 1.53 1.39 -259, o, eon
1
!
1 =247 4,41 0.417£+64  0.¢08
14

FINAL FILTER DESIGN, 100 KT

CLOSED LOOP BIGENVALUES, FILTER

!
! 1
1 E13
!
!
! 2
! ENl
!
!
' 3
t EA2
H
5 5 7

DC I HDE
G.¢09 -0,155€8-12 $.1348-13
0.060 a,153E-23 @.15%E-0G5
0. 08060 0.081E-05 —0.254R-45

RMS STATE EST ERROR, FILTER

1

! t 1
T 2.03 t Xl
1 t

! r 2
! 0.277 ! X602
1 ]

! t 3
'g.6no0 ! X083
! !

! 14
1 2.83 1 Xa6
! !

! (-
voe.1e7 ! Xe7
! !

! ! 6
1 8.000 1 X08
! !

! t 7
! 8.171E-121 XU9
! !

! 18
! 2.000 1 X19
! !

! t 9
9,060 ! X11
! 1

[ 1o
1 0.0609 1 X12
! !

! 11
1 f.0p0 1 X13
1 )

! ro12
10,600 ! X14
| !

8 °

ASI ASE

! 1
N.518E-11 -p.429E-08! E13

!
o2
~B.508E-02 -8, 120 I
!
13
-0.296E-p3  1.18 ! ER2
1
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